PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Polymer composites modified by waste materials containing wood fibres

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, the idea of sustainable development has become one of the most important requirements of civilization. Development of sustainable construction involves the need for the introduction of innovative technologies and solutions that will combine beneficial economic effects with taking care of the health and comfort of users, reducing the negative impact of the materials on the environment. Composites obtained from the use of waste materials are part of these assumptions. These include modified epoxy mortar containing waste wood fibres, described in this article. The modification consists in the substitution of sand by crushed waste boards, previously used as underlays for panels, in quantities of 0%, 10%, 20%, 35% and 50% by weight, respectively. Composites containing up to 20% of the modifier which were characterized by low water absorption, and good mechanical properties, also retained them after the process of cyclic freezing and thawing.
Rocznik
Strony
72--78
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, Rzeszow, Poland
autor
  • Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, Rzeszow, Poland
autor
  • Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, Rzeszow, Poland
Bibliografia
  • 1. Amianti, M. & Botaro, V.R. 2008. Recycling of EPS: A new methodology for production of concrete impregnated with polystyrene (CIP). Cement and Concrete Composites 30, 806–814.
  • 2. Ban, C.C. & Ramli, M. 2011. The implementation of wood waste ash as a partial cement replacement material in the production of structural grade concrete and mortar: An overview. Resources, Conservation and Recycling 55, 669–685.
  • 3. Bignozzi, M.C., Saccani, A. & Sandrolini, F. 2000. New polymer mortars containing polymeric wastes. Part 1. Microstructure and mechanical properties. Composites Part A: Applied Science and Manufacturing 31, 97–106.
  • 4. Bignozzi, M.C., Saccani, A. & Sandrolini, F. 2002. New polymer mortars containing polymeric wastes. Part 2. Dynamic mechanical and dielectric behavior. Composites Part A: Applied Science and Manufacturing 33, 205–211.
  • 5. Choi, N.W. & Ohama, Y. 2004. Development and testing of polystyrene mortars using waste EPS solution-based binders. Construction and Building Materials 18, 235–241.
  • 6. Czarnecki, L. 2010. Polymer concretes. Cement Lime Concrete 2, 63.
  • 7. Czarnecki, L. 2013. Sustainable Concrete; Is Nanotechnology the Future of Concrete Polymer Composites. Advanced Materials Research, 687, Ed. Ru Wang and Zhenghong Yang, Trans Tech Publications Ltd, 3.
  • 8. Czarnecki, L., & Justnes, H. 2012. Sustainable and Durable Concrete. Cement Lime Concrete 6, 341.
  • 9. Czarnecki, L., Kaproń, M., Piasecki, M. & Wall, S. 2012. Budownictwo zrównoważone budownictwem przyszłości. Inżynieria i Budownictwo. 1, 18.
  • 10. de Assuncao, R.M.N., Royer, B., Oliveira, J.S., Filho, G.R. & de Castro Motta, L.A. 2005. Synthesis, characterization and application of the sodium poly(styrenesulfonate) produced from waste polystyrene cups as an admixture in concrete. Journal of Applied Polymer Science 96, 1534–1538.
  • 11. Dębska, B. 2015. Modification of Polymer Composites by Polyethylene Terephthalate Waste. In P.M. Visakh and M. Liang, Eds., Poly(ethylene Terephthalate) Based Blends, Composites and Nanocomposites. Elsevier, Inc., p. 195.
  • 12. Dębska, B. & Lichołai, L. 2015. The selected mechanical properties of epoxy mortar containing PET waste. Construction and Building Materials 94, 579.
  • 13. Dweik, H.S., Ziara, M.M. & Hadidoun, M.S. 2008. Enhancing concrete strength and thermal insulation using thermoset plastic waste. International Journal of Polymeric Materials 57, 635–656.
  • 14. Fowler, D.W., Sander, D. & Carrasquillo, R.L. 1995. The behavior of Portland cement concrete with the incorporation of waste plastic fillers. Disposal and Recycling of Organic and Polymeric Construction Materials 1, 61–74.
  • 15. Ledhema, A., Dheilly, R.M., Benmalek, M.L. & Qu´eneudec, M. 2000. Properties of wood-based composites formulated with aggregate industry waste. Construction and Building Materials 14, 341–350.
  • 16. Lichołai, L. & Dębska, B. 2014. A study of the effect of corrosive solutions on selected physical properties of modified epoxy mortars. Construction and Building Materials 65, 604.
  • 17. Mounanga, P., Gbongbon, W., Poullain, P. & Turcry, P. 2008. Proportioning and characterization of lightweight concrete mixtures made with rigid polyurethane foam wastes. Cement and Concrete Composites 30, 806–814.
  • 18. Palos, A.; D’Souza, N.A., Snively, C.T. & Reidy III, R.F. 2001. Modification of cement mortar with recycled ABS. Cement and Concrete Research 31, 1003–1007.
  • 19. Panesar, D.K. & Shindman, B. 2012. The mechanical, transport and thermal properties of mortar and concrete containing waste cork. Cement & Concrete Composites 34, 982–992.
  • 20. Panyakapo, P. & Panyakapo, M. 2008. Reuse of thermosetting plastic waste for lightweight concrete. Waste Management 28, 1581–1588.
  • 21. Paris, J.M., Roessler, J.G., Ferraro, C.C., DeFord, H.D., & Townsend, T.G. 2016. A review of waste products utilized as supplements to Portland cement in concrete. Journal of Cleaner Production 1–18.
  • 22. Runkiewicz, L. 2010. Realizacja obiektów budowlanych zgodnie z zasadami zrównoważonego rozwoju. Przegląd budowlany 2, 17–23.
  • 23. Schmidt, H. & Cieślak, M. 2008. Concrete with carpet recyclates: Suitability assesment by surface energy evaluation. Waste Management 28, 1182–1187.
  • 24. Sommerhuber, P.F., Welling, J. & Krause, A. 2015. Substitution potentials of recycled HDPE and wood particles from post-consumer packaging waste in Wood–Plastic Composites. Waste Management.
  • 25. Torkaman, J., Ashori, A. & Momtazi, A.S. 2014. Using wood fiber waste, rice husk ash, and limestone powder waste as cement replacement materials for lightweight concrete blocks. Construction and Building Materials 50, 432–436.
  • 26. Yan, L., Kasal, B. & Huang, L. 2016. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Composites Part B, doi:10.1016/j.compositesb.2016.02.002.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f3da1f4-a1e2-4ca5-ad8d-79b83d054050
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.