Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we are interested in studying the Cauchy problem for a weakly coupled system of two semi-linear structurally damped σk-evolution equations, where σk ≥ 1 for k = 1, 2. Our first purpose involves the proof of global (in time) existence of small data energy solutions by mixing additional Lmk regularity for the data, where mk ∈ [1, 2). We want to point out that in some cases of choosing suitable parameters mk, with k = 1, 2, the obtained lower bound of one exponent p or q related to power nonlinearities on the right-hand sides is really smaller than the critical exponent, the so-called modified Fujita exponent. The second aim of this paper is to discuss a blow-up result for Sobolev solutions with any different fractional values of σk ≥ 1 when m1 = m2.
Wydawca
Czasopismo
Rocznik
Tom
Strony
271--288
Opis fizyczny
Bibliogr. 25 poz., 1 wykr.
Twórcy
autor
- Faculty of Mathematics and Informatics, Hanoi University of Science and Technology, No. 1 Dai Co Viet road, Hanoi, Vietnam
autor
- Laboratory of Analysis and Control of PDEs, Djillali Liabes University, P. O.Box 89, Sidi Bel Abbes 22000, Algeria
Bibliografia
- [1] H. S. Aslan and T. A. Dao, On the Cauchy problem for semi-linear σ-evolution equations with time-dependent damping, Math. Methods Appl. Sci. 1 (2023), DOI 10.1002/mma.9857.
- [2] T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford Lecture Ser. Math. Appl. 13, Oxford University, New York, 1998.
- [3] W. Chen and T. A. Dao, On the Cauchy problem for semilinear regularity-loss-type σ-evolution models with memory term, Nonlinear Anal. Real World Appl. 59 (2021), Article ID 103265.
- [4] M. D’Abbicco and M. R. Ebert, A new phenomenon in the critical exponent for structurally damped semi-linear evolution equations, Nonlinear Anal. 149 (2017), 1-40.
- [5] M. D’Abbicco and M. Reissig, Semilinear structural damped waves, Math. Methods Appl. Sci. 37 (2014), no. 11, 1570-1592.
- [6] T. A. Dao, Existence and nonexistence of global solutions for a wave system with different structural damping terms, Vietnam J. Math. 51 (2023), no. 2, 289-310.
- [7] T. A. Dao and M. Ikeda, Blow-up and lifespan estimates for solutions to the weakly coupled system of nonlinear damped wave equations outside a ball, J. Evol. Equ. 23 (2023), no. 1, Paper No. 23.
- [8] T. A. Dao and M. Reissig, An application of L1 estimates for oscillating integrals to parabolic like semi-linear structurally damped σ-evolution models, J. Math. Anal. Appl. 476 (2019), no. 2, 426-463.
- [9] T. A. Dao and M. Reissig, L1 estimates for oscillating integrals and their applications to semi-linear models with σ-evolution like structural damping, Discrete Contin. Dyn. Syst. 39 (2019), no. 9, 5431-5463.
- [10] T. A. Dao and M. Reissig, Blow-up results for semi-linear structurally damped σ-evolution equations, in: Anomalies in Partial Differential Equations, Springer INdAM Ser. 43, Springer, Cham (2021), 213-245.
- [11] T. A. Dao and N. H. Son, Critical curve for a weakly coupled system of semilinear σ-evolution equations with frictional damping, Rocky Mountain J. Math. 52 (2022), no. 1, 299-321.
- [12] A. M. Djaouti, On the benefit of different additional regularity for the weakly coupled systems of semilinear effectively damped waves, Mediterr. J. Math. 15 (2018), no. 3, Paper No. 115.
- [13] P. T. Duong, Some results on the global solvability for structurally damped models with a special nonlinearity, Ukrainian Math. J. 70 (2019), 1395-1418.
- [14] M. R. Ebert and M. Reissig, Methods for Partial Differential Equations. Qualitative Properties of Solutions, Phase Space Analysis, Semilinear Models, Birkhäuser/Springer, Cham, 2018.
- [15] Y. V. Egorov and B.-W. Schulze, Pseudo-Differential Operators, Singularities, Applications, Oper. Theory Adv. Appl. 93, Birkhäuser, Basel, 1997.
- [16] K. Fujiwara, M. Ikeda and Y. Wakasugi, On the Cauchy problem for a class of semilinear second order evolution equations with fractional Laplacian and damping, NoDEA Nonlinear Differential Equations Appl. 28 (2021), no. 6, Paper No. 63.
- [17] M. Ikeda, T. Inui, M. Okamoto and Y. Wakasugi, Lp-Lq estimates for the damped wave equatioan and the critical exponent for the nonlinear problem with slowly decaying data, Commun. Pure Appl. Anal. 18 (2019), no. 4, 1967-2008.
- [18] R. Ikehata, A note on optimal L2-estimates of solutions to some strongly damped σ-evolution equations, Asymptot. Anal. 121 (2021), no. 1, 59-74.
- [19] M. Kainane Mezadek, L1 − L1 estimate for the energy to structurally damped σ-evolution models with time dependent, Mediterr. J. Math. 19 (2022), no. 3, Paper No. 137.
- [20] M. Kainane Mezadek, M. Kainane Mezadek and M. Reissig, Semilinear σ-evolution models with friction and visco-elastic type damping, NoDEA Nonlinear Differential Equations Appl. 29 (2022), no. 6, Paper No. 66.
- [21] M. Kainane Mezadek and M. Reissig, Weakly coupled systems of semilinear σ-evolution equations with friction and visco-elastic type damping, preprint (2023).
- [22] S. Khaldi and F. Z. Arioui, A note on the influence of different additional regularity on the critical exponent, Appl. Math. E-Notes 22 (2022), 169-177.
- [23] A. Mohammed Djaouti and M. Reissig, Weakly coupled systems of semilinear effectively damped waves with time-dependent coefficient, different power nonlinearities and different regularity of the data, Nonlinear Anal. 175 (2018), 28-55.
- [24] K. Nishihara and Y. Wakasugi, Critical exponent for the Cauchy problem to the weakly coupled damped wave system, Nonlinear Anal. 108 (2014), 249-259.
- [25] D. T. Pham, M. Kainane Mezadek and M. Reissig, Global existence for semi-linear structurally damped σ-evolution models, J. Math. Anal. Appl. 431 (2015), no. 1, 569-596.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f3b75c4-da19-477d-a885-a4a0f409c9d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.