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Abstract 

A review of selected nonlinear phenomena which may occur in fixed or rotating structures has been presented 

in the paper. At first, a self, parametrically and externally exited oscillator with added time delay control has 

been studied. It has been shown that the interaction between different vibration types may produce an untypical 
resonance curve, with five solutions occurring, observed by an internal resonance loop. The existence of the 

loop may be controlled by adding a time delay input signal. A proper selection of the time delay may reduce the 

loop or eliminate it totally. In the second problem a rotating hub-beam structure has been studied. The blade, 
apart from passive layers, has been composed of two active PZT layers which enabled active vibration control. 

A nonlinear coupling of the structure (plant) and the controller resulted in the so called saturation phenomenon 

which has been effectively used for the vibration reduction. 
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1. Introduction 

Nonlinear dynamic effects may occur in civil, mechanical or aerospace structures and 

sometimes, even small nonlinearities may result in large qualitative and quantitative 

changes in structural dynamics [1, 2]. The literature on nonlinear mechanics is very reach 

but some of special phenomena have been selected and presented in book [3]. As a 

classical example we may mention pendulum-like systems. In practice, a pendulum can be 

used as a dynamic absorber mounted in high buildings, bridges or chimneys. However, 

applying a specific semi-active damper and an additional levitating magnet inside the 

pendulum [3, 4] it is possible to supress vibrations and to harvest energy at the same time, 

taking advantage from nonlinear effects. Nonlinear mechanics must be used to explain 

undesired response in slender footbridges, towers or sagged cables. The famous London 

Millennium Bridge event [3] may serve as an example or sagged cables and towers [1, 2] 

which under specific fluid flow conditions may perform large oscillations of complex 

nature, characterized by bifurcation scenarios leading to a transition to very complex 

regular or chaotic oscillations.  

The nonsmooth problems belongs to another and specific area of nonlinear dynamics. 

The methodology for solving them and mechanical engineering examples have been 

studied in [3] for vibro-impact systems in the form of a moling device, the opening and 

closing of a fatigue crack on the host system dynamics, and nonlinear interactions between 

a rotor and snubber ring system. 
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The main challenges of nonlinear dynamics are a proper reduced-order modelling, 

obtaining asymptotic solutions and dedicated experimental investigations which allow 

understanding of the observed nonlinear phenomena. 

Smart active or semi-active elements, like for example: magnetorheological dampers, 

piezoelectric patches or shape memory alloys actuators embedded inside the structure, 

together with robust control algorithms, may eliminate regions of dangerous behaviour 

[3, 5]. We may also take advantage of the nonlinear phenomena to design an active 

structure to work more effectively. Nonlinear effects can be introduced artificially in 

control strategy to get specific behaviour, for example to enhance response of the system 

to harvest energy [6] or, to supress oscillations by supplying small amount of energy [7].  

In the present paper we present a brief review of specific dynamics of (i) a self, 

parametrically and externally exited system with added time delay control and (ii) 

dynamics of a rotor with embedded active PZT layers and applied a nonlinear saturation 

control strategy. 

2. Dynamics and Control of Nonlinear Structures 

Let us consider a nonlinear oscillator of Duffing type which includes self, parametric and 

external excitations and time delay signals of displacement and velocity. The delayed 

ordinary differential equation of motion have the form [8] 

        2 3

1 21 cos 2 cosx x x t x x f t g x t g x t                    (1) 

Parameters  and  represent nonlinear van der Pol damping, µ and Ω are amplitude and 

frequency of parametric excitation, f amplitude of external excitation, g1, g2 gains of the 

delayed signals and  is time delay.  
 

 

Figure 1. Bifurcation diagram for a nonlinear system without control g1 = g2 = 0; 

 = 0.01,  = 0.05,  = 0.1, µ = 0.2, f = 0.15 

The dynamics of the structure can be studied directly solving numerically Eq.(1) or 

analytically by approximate methods. The presented equation has been solved analytically 

by the multiple time scale method, taking into account a second order approximation [8]. 

On the basis of the analytical solutions, which for the sake of brevity are not presented 

here, it is possible to study bifurcation scenario and influence of selected parameters on 

the system response. 
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The interactions between self, parametric and external excitations can be observed by 

setting gains g1 = g2 = 0. In this case the mentioned above, three different types of 

vibrations interact. 

The bifurcation diagram in Fig. 1 has been obtained by direct numerical simulations 

of Eq.(1). The black zones correspond to quasi-periodic oscillations while a dotted line 

represents harmonic solution with frequency equal to excitation frequency Ω. This 

phenomenon corresponds to so called quenching of self-excited vibrations [9]. As we may 

see inside the resonance zone an additional line which represents additional harmonic 

solutions occurs. This phenomenon is a result of interactions of self and parametric 

vibrations and external harmonic force. If external force is equal to zero  

(f = 0) then this phenomenon does not take place. We note that unstable solutions are not 

visible in Fig. 1. More information on the system behaviour can be drawn on the basis of 

analytical solution presented in [8]. 

      a)                                                               b) 

  

Figure 2. Resonance curves for a nonlinear system (a) without control (g1 = g2 = 0)  

and with control (g1 = 0.1,  = 0.5, g2 = 0)  (b) 

The resonance curve obtained analytically is presented in Fig. 2(a) with stable and unstable 

solutions represented by solid and dashed lines respectively. Indeed, inside the resonance 

zone the untypical loop is obtained. But the only upper part of the loop is stable. The stable 

solutions correspond to those presented in bifurcation diagram in  

Fig. 1. Outside the resonance zone there are two Hopf bifurcation points HB1 and HB2 

(Fig. 2a). In these points the periodic solution becomes unstable and quasi-periodic 

oscillations arise, those represented by dark zones in Fig. 1. The occurrence of the loop as 

well as Hopf bifurcation can be fully controlled by the time delay feedback. On the basis 

of analytical solutions obtained for the delayed differential equation we can control 

interaction between different vibration types. By adding time delay input g1 = 0.1,  

and time delay  = 0.5 we change the system response and the additional solutions, as well 

as quasi-periodic motions are eliminated in Fig. 2(b). Hopf bifurcations HB1, HB2 may be 

controlled and the curve changes its course into typical Duffing type. 

Specific nonlinear phenomena may be used to enhance control strategy. One of the 

method which takes advantage of nonlinear dynamics to control the system response with 

small amount of input energy has been proposed for fixed structures in [5, 7]. Due to 
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quadratic coupling of the plant and the especially tuned controller, the saturation control 

strategy has been successfully applied in theory [7] and implemented in the laboratory 

setup [5]. This strategy has also been applied for self and externally excited systems in 

[10] and then for rotating structures with PZT layers in [11].    

Let us take into account a rotating structure presented in Fig. 3. The structure is 

composed of a rigid hub with an attached composite thin-walled beam with a rectangular 

box cross-section. The reinforcing fibres of the composite beam are placed creating so 

called Circumferentially Asymmetric Stiffness (CAS) which gives strong bending-

twisting coupling of the blade. Furthermore, there are two PZT layers embedded into the 

composite structure as presented in Fig. 3. Considering possible large oscillations 

nonlinear constitutive equations for the active piezo-layers are taken into account. The 

model of the composite beam has been presented in [12] and then developed for composite 

with active layers in [13].  
 

 

Figure 3. Model of a rotating structure with active elements 

The final model of a rotating structure has the form 
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where q1 is a generalised coordinate of the beam representing complex bending-twisting 

motion of the piezo-composite blade,  represents rotation of the structure, ij are the 

coefficients coming from modal projection. Damping of the system is assumed to be 

viscous and represented by 1 and h damping coefficients for the beam and for the hub, 

respectively. The system is excited by torque µ = µ0 + sint composed of constant µ0 

and harmonic component with amplitude  and frequency .  

Input signal qc, given in square and multiplied by gain g1 is added to the right hand side of 

Eq.(2) and it comes from additional oscillator written in the third equation of set (2). This 

oscillator plays a role of a controller with coordinate qc. This controller is coupled with 

beam oscillations by a product of signals q1 and qc and gain g2. A very important 

requirement for the proposed control strategy is a proper tuning of the controller natural 

frequency to the rotating beam frequency, keeping them in ratio: 0 1 / 2.c   Frequency 

1 is crucial in the proposed control strategy and it is defined as: 
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In a case of rotating structure this frequency has to take into account angular velocity of 

the hub   and mass moment of hub inertia Jh.  

Analysis of Eq.(2) is performed numerically for data [11,13]: 
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The exciting torque supplied to the hub is defined by parameters 0 0, 0.005.    This 

means that the hub is excited periodically. At first we consider only hub-blade dynamics 

without any control q1 = g2 = 0. Due to a nonlinear electric field the blade resonance curve 

demonstrates softening phenomenon. In Fig. 4 (a) we present resonance curves for 

selected amplitudes of excitation . For large oscillations of the blade the nonlinear 

softening effect with unstable solutions is clearly observed. 

 

    

Figure 4. Resonance curves of a rotating active structure without control for selected 

amplitudes of excitation  (a) and saturation control effect around the resonance zone for 

 = 0.005 and q1=0.01, q2=1.0 (b)  

If the saturation control is applied by setting q1 = 0.01, q2 = 1.0 then the resonance peak is 

reduced. The final effect of the nonlinear saturation control is presented in Fig. 4(b). The 

middle part of the resonance curve becomes unstable and in this zone, if the controller is 

activated, vibrations are suppressed almost to zero. 

3. Conclusions  

Importance of a specific nonlinear phenomena for fixed and rotating structure has been 

presented in the paper. In a case of nonlinear oscillator with self, parametric and external 
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excitation the occurrence of a loop inside the resonance curve has been shown. However, 

by the added time delay signals the existence of the loop can be controlled. 

In a case of the rotating structure with active elements, the nonlinear effect has been 

included into the controller. Thus, due to specific nonlinear coupling, the nonlinear 

saturation control has been applied and vibrations of the rotor around the resonance zone 

have been effectively suppressed. 
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