A CHARACTERIZATION OF A HOMOGRAPHIC TYPE FUNCTION II

Katarzyna Domańska

Institute of Mathematics and Computer Science
Jan Dtugosz University in Częstochowa
Armii Krajowej 13/15, 42-200 Częstochowa, Poland
e-mail: k.domanska@ajd.czest.pl

Abstract

This article is a continuation of the investigations contained in the previous paper [2]. We deal with the following conditional functional equation:

$$
f(x) f(y) \neq \frac{1}{\lambda^{2}} \quad \text { implies } \quad f(x \star y)=\frac{f(x)+f(y)+2 \lambda f(x) f(y)}{1-\lambda^{2} f(x) f(y)}
$$

with $\lambda \neq 0$.

1. Introduction

If (G, \star) is a group or a semigroup and F stands for an arbitrary binary operation in some set H, then a solution of the functional equation

$$
f(x \star y)=F(f(x), f(y))
$$

is called a homomorphism of structures (G, \star) and (H, F).
Let $J \subset \mathbb{R}$ be a nontrivial interval and $I \subset \mathbb{R}$ be an interval such that $I+I \subset I$. Let further $F: J \times J \longrightarrow J$ be a given map. Functional equations of the form

$$
f(x+y)=F(f(x), f(y)), \quad x, y \in I
$$

have nonconstant continuous solutions if and only if there exists an open interval constituting a continuous group with respect to the associative operation F. All such solutions are strictly monotonic (see Aczél [1]). Here we consider a rational function $F:\left\{(x, y) \in \mathbb{R}: \quad x y \neq \frac{1}{\lambda^{2}}\right\} \longrightarrow \mathbb{R}$ of the form

$$
F(u, v)=\frac{u+v+2 \lambda u v}{1-\lambda^{2} u v}
$$

with $\lambda \neq 0$. This is a rational two-place real-valued function defined on a disconnected subset of the real plane \mathbb{R}^{2} that with every $\lambda \in \mathbb{R} \backslash\{0\}$ satisfies the equation

$$
F(F(x, y), z)=F(x, F(y, z))
$$

for all $(x, y, z) \in \mathbb{R}^{3}$ such that products $x y, y z, F(x, y) z, x F(y, z)$ are not equal to λ^{-2}. Rational functions with such or similar properties are termed associative operations.

A homografic function $\varphi: \mathbb{R} \backslash\{1\} \longrightarrow \mathbb{R}$ given by the formula

$$
\varphi(x)=\frac{x}{\lambda-\lambda x}, \quad x \neq 1,
$$

satisfies the functional equation

$$
f(x+y)=\frac{f(x)+f(y)+2 \lambda f(x) f(y)}{1-\lambda^{2} f(x) f(y)}
$$

for every pair $(x, y) \in \mathbb{R}^{2} \backslash D$, where

$$
D=\{(x, 1-x): \quad x \in \mathbb{R}\} \cup\{(x, 1): \quad x \in \mathbb{R}\} \cup\{(1, x): \quad x \in \mathbb{R}\} .
$$

We shall determine all the functions $f: G \longrightarrow \mathbb{R}$, where (G, \star) is a group, that satisfy the functional equation

$$
\begin{equation*}
f(x \star y)=\frac{f(x)+f(y)+2 \lambda f(x) f(y)}{1-\lambda^{2} f(x) f(y)} . \tag{1}
\end{equation*}
$$

By a solution of the functional equation (1) we understand any function $f: G \longrightarrow \mathbb{R}$ that satisfies the equality (1) for every pair $(x, y) \in G^{2}$ such that $f(x) f(y) \neq \lambda^{-2}$. Thus we deal with the following conditional functional equation:

$$
\begin{equation*}
f(x) f(y) \neq \frac{1}{\lambda^{2}} \quad \text { implies } \quad f(x \star y)=\frac{f(x)+f(y)+2 \lambda f(x) f(y)}{1-\lambda^{2} f(x) f(y)} \tag{E}
\end{equation*}
$$

for all $x, y \in G$.
The solution of equation (E) in the case $\lambda=1$ was described in [2].

2. Main result

We proceed with a description of solutions of (E).
Theorem. Let (G, \star) be a group and $\lambda \in \mathbb{R} \backslash\{0\}$ be fixed. A function $f: G \longrightarrow \mathbb{R}$ yields a nonconstant solution to the functional equation

$$
\begin{equation*}
f(x) f(y) \neq \lambda^{-2} \quad \text { implies } \quad f(x \star y)=\frac{f(x)+f(y)+2 \lambda f(x) f(y)}{1-\lambda^{2} f(x) f(y)} \tag{E}
\end{equation*}
$$

for all $x, y \in G$ if and only if either

$$
f(x):=\left\{\begin{aligned}
\frac{1}{\lambda} & \text { for } x \in H, \\
-\frac{1}{\lambda} & \text { for } x \in G \backslash H
\end{aligned}\right.
$$

or

$$
f(x):= \begin{cases}\frac{A(x)}{\lambda-\lambda A(x)} & \text { for } x \in \Gamma \\ -\frac{1}{\lambda} & \text { for } x \in G \backslash \Gamma\end{cases}
$$

or

$$
f(x):=\left\{\begin{aligned}
\frac{1}{\lambda} & \text { for } x \in \Gamma \backslash Z \\
0 & \text { for } x \in Z \\
-\frac{1}{\lambda} & \text { for } x \in G \backslash \Gamma
\end{aligned}\right.
$$

where $(H, \star),(\Gamma, \star)$ are subgroups of the group $(G, \star),(Z, \star)$ is a subgroup of the group (Γ, \star), and $A: \Gamma \longrightarrow \mathbb{R}$ is a homomorphism such that $1 \notin A(\Gamma)$.

Proof. Assume that f is a nonconstant solution of equation (E), i.e.

$$
f(x) f(y) \neq \lambda^{-2} \quad \text { implies } \quad f(x \star y)=\frac{f(x)+f(y)+2 \lambda f(x) f(y)}{1-\lambda^{2} f(x) f(y)}
$$

for all $x, y \in G$. Hence

$$
\lambda^{2} f(x) f(y) \neq 1 \quad \text { implies } \quad \lambda f(x \star y)=\frac{\lambda f(x)+\lambda f(y)+2 \lambda^{2} f(x) f(y)}{1-\lambda^{2} f(x) f(y)} .
$$

Thus, it is easy to obserwe that (E) states that the function $g:=\lambda f$ satisfies the following functional equation:

$$
g(x) g(y) \neq 1 \quad \text { implies } \quad g(x \star y)=\frac{g(x)+g(y)+2 g(x) g(y)}{1-g(x) g(y)}
$$

for all $x, y \in G$. From the theorem proved by the author in [2] we conclude that g is of the form

$$
g(x):=\left\{\begin{aligned}
1 & \text { for } x \in H \\
-1 & \text { for } x \in G \backslash H
\end{aligned}\right.
$$

or

$$
g(x):= \begin{cases}\frac{A(x)}{1-A(x)} & \text { for } x \in \Gamma \\ -1 & \text { for } x \in G \backslash \Gamma\end{cases}
$$

or

$$
g(x):=\left\{\begin{aligned}
1 & \text { for } x \in \Gamma \backslash Z \\
0 & \text { for } x \in Z \\
-1 & \text { for } x \in G \backslash \Gamma,
\end{aligned}\right.
$$

where $(H, \star),(\Gamma, \star)$ are subgroups of the group $(G, \star),(Z, \star)$ is a subgroup of the group (Γ, \star), and $A: \Gamma \longrightarrow \mathbb{R}$ is a homomorphism such that $1 \notin A(\Gamma)$. This means that f is of the form as above.

It is easy to check that each of the functions above yields a solution to the equation (E). Thus the proof has been completed.

The following remark gives the form of constant solutions to equation (E).

Remark. Let (G, \star) be a group. The only constant solutions of equation (E) are $f=-\frac{1}{\lambda}, f=0$ and $f=\frac{1}{\lambda}$.

To check this, assume that $f=c$ fulfils (E). Then

$$
c^{2} \neq \frac{1}{\lambda^{2}} \Longrightarrow c=2 c \frac{1+\lambda c}{1-\lambda^{2} c^{2}},
$$

i.e.

$$
c \in\left\{-\frac{1}{\lambda}, \frac{1}{\lambda}\right\} \quad \text { or } \quad c=0 \quad \text { or } \quad 1=2 \frac{1+\lambda c}{1-\lambda^{2} c^{2}},
$$

whence

$$
c \in\left\{-\frac{1}{\lambda}, 0, \frac{1}{\lambda}\right\}
$$

which was to be shown.
Remark. Solutions of (1) for $\lambda \in\{-1,1\}$ in the class of continuous functions can be found in [1].

References

[1] J. Aczél. Lectures on Functional Equations and Their Applications. Academic Press, New York 1966.
[2] K. Domańska. A characterization of a homographic type function. Scientific Issues, Jan Dtugosz University in Częstochowa, Mathematics, XV, 25-30, 2010.

