PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification of Sound Power Levels and Surface Absorption Coefficients in Multi-Source Industrial Buildings by Using a Simplified Diffusion Model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article deals with the identification of sound powers and absorption surface coefficients in multisource industrial buildings from the knowledge of the sound pressure levels (SPLs) at several monitoring points. This inverse problem is formulated as one of optimisation in which the objective function is the difference between the measured and predicted SPLs. The methodology combines the use of a simplified acoustic diffusion model with the simulated annealing optimisation technique. The former is a recently developed model for estimating the SPLs in a fast and sufficiently accurate form. The low computational cost of the model constitutes the major advantage for the optimisation procedure due to the great numer of simulations required. Numerical examples are given to show the efficiency of the proposed approach.
Rocznik
Strony
93--102
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
  • Research Centre of Theoretical and Applied Mechanics, Bahía Blanca Regional Faculty, National Technological University, 11 de Abril 461, B8000LMI Bahía Blanca, Argentina
  • Research Centre of Theoretical and Applied Mechanics, Bahía Blanca Regional Faculty, National Technological University, 11 de Abril 461, B8000LMI Bahía Blanca, Argentina
  • Department of Engineering, National University of South Argentina
  • National Scientific and Technical Research Council, Argentina
Bibliografia
  • 1. Billon A., Picaut J., Foy C., Valeau V., Sakout A. (2008), Introducing atmospheric attenuation within a diffusion model for room-acoustic predictions, Journal of Acoustical Society of America, 123, 6, 4040-4043.
  • 2. Billon A., Picaut J., Valeau V., Sakout A. (2012), Acoustic predictions in industrial spaces using a diffusion model, Advances in Acoustics and Vibration, 2012.
  • 3. Billon A., Valeau V., Sakout A., Picaut J. (2006), On the use of a diffusion model for acoustically coupled rooms, Journal of Acoustical Society of America, 120, 4, 2043-2054.
  • 4. Chiu M.-C. (2012), Noise elimination of a multi-tone broadband noise with hybrid Helmholtz mufflers using a simulated annealing method, Archives of Acoustics, 37, 4, 489-498.
  • 5. Dreo J., Petrowski A., Siarry P., Taillard E. (2006), Metaheuristics for hard optimization, Springer-Verlag, Berlin-Heidelberg, Germany.
  • 6. Foy C., Valeau V., Billon A., Picaut J., Sakout A. (2009), An empirical diffusion model for acoustic prediction in rooms with mixed specular and diffuse reflections, Acta Acustica united with Acustica, 95, 1, 97-105.
  • 7. Guasch O., Magrans F. X., Rodriguez P. V. (2002), An inversion modelling method to obtain the acoustic power of the noise sources in a large factory, Applied Acoustics, 63, 4, 401-417.
  • 8. Hodgson M. (2003), Ray-tracing evaluation of empirical models for predicting noise in industrial workshops, Applied Acoustics, 64, 11, 1033-1048.
  • 9. Hornikx M., Hak C., Wenmaekers R. (2015), Acoustic modelling of sports halls, two case studies, Journal of Building Performance Simulation, 8, 1, 26-38.
  • 10. Jing Y., Xiang N. (2008), On boundary conditions for the diffusion equation in room-acoustic prediction: theory, simulations and experiments, Journal of Acoustical Society of America, 123, 1, 145-153.
  • 11. Keränen J., Airo E., Olkinuora P., Hongisto V. (2003), Validity of ray-tracing method for the application of noise control in workplaces, Acta Acustica united with Acustica, 89, 5, 863-874.
  • 12. Keränen J., Hongisto V. (2010), Comparison of simple room acoustic models used for industrial spaces, Acta Acustica united with Acustica, 96, 1, 179-194.
  • 13. Kirkpatrick S., Gelatt C. D., Vecchi M. P. (1983), Optimization by simulated annealing, Science, 220, 671-680.
  • 14. Kraszewski J. (2012), Computing reverberation time in a 3D room model using a finite difference method applied for the diffusion equation, Archives of Acoustics, 37, 2, 171-180.
  • 15. Kuttruff H. (2000), Reverberation and steady state energy density, Room Acoustics, 4th ed., pp.115-146, Spon Press, New York.
  • 16. Lan T. S., Chiu M.-C. (2008), Identification of noise sources in factory’s sound field by using genetic algorithm, Applied Acoustics, 69, 8, 733-750.
  • 17. Luzzato E., Lecointre C. (1986), Some simple and effective methods for sound source identification with geometrical acoustic models, Journal of Sound and Vibration, 105, 3, 473-490.
  • 18. Mun S., Geem Z. W. (2009), Determination of individual sound power levels of noise sources using a harmony search algorithm, International Journal of Industrial Ergonomics, 39, 2, 366-370.
  • 19. Nava G. P., Yasuda Y., Sato Y., Sakamoto S. (2009), On the in situ estimation of surface acoustic impedance in interiors of arbitrary shape by acoustical inverse methods, Acoustical Science and Technology, 30, 2, 100-109.
  • 20. Piechowicz J. (2007), Acoustic field in the mechanical workshop, Archives of Acoustics, 32, 4, 221-226.
  • 21. Piechowicz J. (2009), Determination of the sound power of a machine inside an industrial room by the inversion method, Archives of Acoustics, 34, 2, 169-176.
  • 22. Piechowicz J., Czajka I. (2012), Estimation of acoustic impedance for surfaces delimiting the volume of an enclosed space, Archives of Acoustics, 37, 1, 97-102.
  • 23. Sequeira M. E., Cortínez V. H. (2012), A simplified two-dimensional acoustic diffusion model for predicting sound levels in enclosures, Applied Acoustics, 73, 8, 842-848.
  • 24. Sequeira M. E., Cortínez V. H. (2016), Optimal acoustic design of multi-source industrial buildings by means of a simplified acoustic diffusion model, Applied Acoustics, 103, 71-81.
  • 25. Valeau V., Hodgson M., Picaut J. (2007), A diffusion-based analogy for the prediction of sounds fields in fitted rooms, Acta Acustica united with Acustica, 93, 1, 94-105.
  • 26. Valeau V., Picaut J., Hodgson M. (2006), On the use of a diffusion equation for room-acoustic predictions, Journal of Acoustical Society of America, 119, 3, 1504-1513.
  • 27. Ver I. L., Beranek L. L. (2006), Noise and vibration control engineering: principles and applications, 2nd ed., John Wiley & Sons, Inc., New Jersey.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f23c81b-de34-4120-a715-27dea5e4e442
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.