PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A comparative study of headway-based and transport system-based assignments of public transport in Visum: the city of Kryvyi Rih case

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Many researchers have explored public transport assignment methodologies employing transport modelling software. Nevertheless, there remains a gap in evaluating real-world public transit networks utilizing diverse assignment procedures within Visum software. This paper introduces a thorough comparison of algorithms involved in public transport assignment processes, using the transport model of the city of Kryvyi Rih in Ukraine. The three scenarios of the model were developed depending on the public transport assignment procedure: headway-based, transport system-based utilized to all links, turns, and major turns in the network graph, and transport system-based applied only to the links, turns, and major turns traversed by the active public transport lines. The model of the network comprises 13 transport systems, 7 transport modes, 27598 links, 10097 nodes, 83270 turns, 238 zones, 1748 connections for private transport, 3013 connections for public transport, 534 stops, 1165 stop areas, 1190 stop points, 130 lines and 218 line routes. The transport demand model encompassed 14 demand segments. Compared to the outputs of the model calculation using the headway-based procedure, in the scenarios with transport system-based assignment, passenger flows on rail tram lines significantly decreased. Also, the results of scenarios with transport system-based assignment showed that the passengers extremely use parallel streets for travel from an origin to a destination. The modelling outputs for an actual urban network illustrate that the choice of the shortest route in the transport system-based assignment is closely linked to the main urban roads. This circumstance could potentially result in a rise in the number of transfers needed to sustain accessibility to districts residing far from the central highway.
Rocznik
Tom
Strony
171--182
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
  • Faculty of Mechanical Engineering and Transport, Kryvyi Rih National University, Vitalii Matusevych Street, 11, Kryvyi Rih, Ukraine
Bibliografia
  • 1. Jing Dian, Enjian Yao, Rongsheng Chen, Xun Sun. 2023. “Optimal Design Method of Public Transit Network Considering Transfer Efficiency.” IET Intelligent Transport Systems 17(6): 1118-36. DOI: https://doi.org/10.1049/itr2.12349.
  • 2. 2024. Transport Analysis Guidance (TAG). TAG unit M3-2 public transport assignment modelling, including forthcoming changes for May 2024. Department for Transport.
  • 3. 2014. JASPERS Appraisal Guidance (Transport). The Use of Transport Models in Transport Planning and Project Appraisal.
  • 4. 2024. PTV VISUM User Manual. PTV Planung Transport Verkehr GmbH.
  • 5. Farahani Reza Zanjirani, Elnaz Miandoabchi, W.Y. Szeto, Hannaneh Rashidi. 2013. “A Review of Urban Transportation Network Design Problems.” European Journal of Operational Research 229(2): 281-302. DOI: https://doi.org/10.1016/j.ejor.2013.01.001.
  • 6. Soares Philipp Heyken, Leena Ahmed, Yong Mao, Christine L. Mumford. 2020. “Public Transport Network Optimisation in PTV Visum Using Selection Hyper-Heuristics.” Public Transport 13(1): 163-96. DOI: https://doi.org/10.1007/s12469-020-00249-7.
  • 7. Soares Philipp Heyken. 2020. “Zone-Based Public Transport Route Optimisation in an Urban Network.” Public Transport 13(1): 197-231. DOI: https://doi.org/10.1007/s12469-020-00242-0.
  • 8. Zhongyi Lin, Yang Cao, Huasheng Liu, Jin Li, and Shuzhi Zhao. 2021. “Research on Optimization of Urban Public Transport Network Based on Complex Network Theory.” Symmetry 13(12): 2436. DOI: https://doi.org/10.3390/sym13122436.
  • 9. Cats Oded, Gert-Jaap Koppenol, Martijn Warnier. 2017. “Robustness Assessment of Link Capacity Reduction for Complex Networks: Application for Public Transport Systems.” Reliability Engineering & Safety System 167: 544-53. DOI: https://doi.org/10.1016/j.ress.2017.07.009.
  • 10. Friedrich Markus, Thomas Haupt, Klaus Noekel. 1999. “Planning and Analyzing Transit Networks: An Integrated Approach Regarding Requirements of Passengers and Operators.” Journal of Public Transportation 2(4): 19-39. DOI: https://doi.org/10.5038/2375-0901.2.4.2.
  • 11. Horbachov Peter, Oleksandr Makarichev, Olha Svichynska. 2022. “A New Route Choice Model for Urban Public Transit with Headway-Based Service.” Periodica Polytechnica Transportation Engineering 51(1): 22-30. DOI: https://doi.org/10.3311/pptr.15864.
  • 12. Eltved Morten, Otto Anker Nielsen, Thomas Kjær Rasmussen. 2019. “An Assignment Model for Public Transport Networks with Both Schedule- and Frequency-Based Services.” EURO Journal on Transportation and Logistics 8(5): 769-93. DOI: https://doi.org/10.1007/s13676-019-00147-4.
  • 13. Gentile Guido, Michael Florian, Younes Hamdouch, Oded Cats, Agostino Nuzzolo. 2016. “The Theory of Transit Assignment: Basic Modelling Frameworks.” Modelling Public Transport Passenger Flows in the Era of Intelligent Transport Systems 2016: 287-386. DOI: https://doi.org/10.1007/978-3-319-25082-3_6.
  • 14. Orlando Victoria M., Enrique G. Baquela, Neila Bhouri, Pablo A. Lotito. 2022. “Analytical and Simulation-Based Estimation of Public Transport Demand.” Transportation Research Procedia 62: 727-34. DOI: https://doi.org/10.1016/j.trpro.2022.02.090.
  • 15. Tan Qian, Xiangdong Zhou, Wusheng Liu. 2021. “Transit Assignment Modeling Approaches Based on Interval Uncertainty of Urban Public Transit Net Impedance.” Tehnicki vjesnik - Technical Gazette 28(5): 1582-1589. DOI: https://doi.org/10.17559/tv-20210520044802.
  • 16. Narayan Jishnu, Oded Cats, Niels van Oort, Serge Hoogendoorn. 2020. “Integrated Route Choice and Assignment Model for Fixed and Flexible Public Transport Systems.” Transportation Research Part C: Emerging Technologies 115: 102631. DOI: https://doi.org/10.1016/j.trc.2020.102631.
  • 17. Briem Lars, Sebastian Buck, Holger Ebhart, Nicolai Mallig, Ben Strasser, Peter Vortisch, Dorothea Wagner, Tobias Zündorf. 2017. “Efficient Traffic Assignment for Public Transit Networks.” In: 16th International Symposium on Experimental Algorithms (SEA 2017): 20:1-20:14. 2017.
  • 18. Kieu Le Minh. 2011. „ Public transportation modeling in urban areas.” Master thesis. Norrkoping, Sweden: Linköping University.
  • 19. Ranceva Justina, Rasa Ušpalytė-Vitkūnienė. 2024. “Specifics of Creating a Public Transport Demand Model for Low-Density Regions: Lithuanian Case.” Sustainability 16(4): 1412. DOI: https://doi.org/10.3390/su16041412.
  • 20. Hildebrand Cisilia, Stina Hörtin. 2014. „A comparative study between Emme and Visum with respect to public transport assignment.” Master thesis. Linköping, Sweden: Linköping University.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f21d4fe-36b5-4702-9405-fd50dd0eb026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.