PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bioaccumulation and Ecological Risk Assessment of Heavy Metal Contamination (Lead and Copper) Build Up in the Roots of Avicennia alba and Excoecaria agallocha

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mangrove roots play an important role in reducing heavy metal pollution in their surroundings. This study aimed to assess the bioaccumulation and ecological risk assessment of heavy metal pollution in mangrove roots. Mangrove root samples consisting of two species (Avicennia alba and Excoecaria agallocha) were collected from two observation stations in the mangrove ecosystem of Payung Island, Banyuasin District, South Sumatra, Indonesia. Heavy metal concentrations were measured by atomic absorption spectrometry. Then, statistical analysis was carried out by one-way analysis of variance (ANOVA). Ecological risk assessment used the bioconcentration factor (BCF), geoaccumulation index (Igeo), contamination factor (Cf), and pollution load index (PLI). On the basis of the results, the highest sediment heavy metal concentration at station 2 was Pb amounted to 13.57±0.46 mg/kg, and Cu amounted to 11.08±0.38 mg/kg. In turn, the highest heavy metal concentration of mangrove roots in E. agallocha species for Pb amounted to 2.89±0.033 mg/kg and A. alba for Cu amounted to 10.57±0.38, BCF was classified as exclusion (BCF<1), except for the BCF of Cu station 1, which was classified as hyperaccumulator (BCF>1). Igeo shows that the level of pollution is not contaminated (Igeo<0), and Cf shows low pollution (Cf <1), except Cf Pb station 2 is classified as moderate pollution. Conversely, PLI is included in the category of not polluted (PLI<0). Mangrove roots play an important role in reducing heavy metal pollution in the surrounding area. Therefore, an in-depth understanding of heavy metal dynamics can be the basis for designing effective coastal environmental conservation strategies.
Rocznik
Strony
101--113
Opis fizyczny
Bibliogr. 91 poz., rys., tab.
Twórcy
  • Environmental Management Study Program, Graduate Program, Universitas Sriwijaya, Palembang 30139, Indonesia
  • Department of Marine Science, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya 30862, South Sumatra, Indonesia
  • Department of Marine Science, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya 30862, South Sumatra, Indones
  • Department of Marine Science, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya 30862, South Sumatra, Indonesia
  • Department of Marine Science, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya 30862, South Sumatra, Indonesia
  • Department of Marine Science, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya 30862, South Sumatra, Indonesia
  • Department of Marine Science, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya 30862, South Sumatra, Indonesia
Bibliografia
  • 1. Akhtar, N., Syakir Ishak, M.I., Bhawani, S.A., Umar, K. 2021. Various natural and anthropogenic factors responsible for water quality degradation: a review. Water, 13(19): 2660. https://doi.org/10.3390/W13192660
  • 2. Aljahdali, M.O., Alhassan, A.B. 2020. Ecological risk assessment of heavy metal contamination in mangrove habitats, using biochemical markers and pollution indices: A case study of Avicennia marina L. in the Rabigh lagoon, Red Sea. Saudi J. Biol. Sci., 27(4): 1174–1184. https://doi.org/10.1016/j.sjbs.2020.02.004
  • 3. Almahasheer, H. 2019. High levels of heavy metals in Western Arabian Gulf mangrove soils. Mol. Biol. Rep., 46(2): 1585–1592. https://doi.org/10.1007/S11033-019-04603-2/METRICS
  • 4. Anggraini, R.R., Yanuhar, U., Risjani, Y. 2020. Characteristic of sediment at Lekok coastal waters, Pasuruan Regency, East Java. J. Ilmu Dan Teknol. Kelaut. Trop., 12(1): 235–246. https://doi.org/10.29244/JITKT.V12I1.28705
  • 5. Anzecc, Armcanz. 2000. Australian and New Zealand guidelines for fresh and marine water quality. In national water quality management strategy, 1.
  • 6. Ayu, S.M., Najib, N.N., Yumna, Y., Witno, W., Maria, M., Liana, L., Sada, N.H., Pitra, P. 2023. Soil physical characteristics of the mangrove ecosystem in bone bay, Palopo City. Planta Trop., 11(2): 105–114. https://doi.org/10.18196/pt.v11i2.16646
  • 7. Briffa, J., Sinagra, E., Blundell, R. 2020. Heavy metal pollution in the environment and their toxicological effects on humans. 6(9): e04691. https:// doi.org/10.1016/J.HELIYON.2020.E04691
  • 8. Castro, E., Pinedo, J., Marrugo, J., León, I. 2022. Retention and vertical distribution of heavy metals in mangrove sediments of the protected area swamp of Mallorquin, Colombian Caribbean. Reg. Stud. Mar. Sci., 49: 102072. https://doi.org/10.1016/J.RSMA.2021.102072
  • 9. Chai, M., Li, R., Ding, H., Zan, Q. 2019. Occurrence and contamination of heavy metals in urban mangroves: A case study in Shenzhen, China. Chemosphere, 219: 165–173. https://doi.org/10.1016/J.CHEMOSPHERE.2018.11.160
  • 10. Chedadi, M., Amakdouf, H., Barnossi, A. El, Moussaoui, A. El, Kara, M., Asmi, H. El, Merzouki, M., Bari, A. 2023. Impact of anthropogenic activities on the physicochemical and bacteriological quality of water along Oued Fez River (Morocco). Sci. African, 19: e01549. https://doi.org/10.1016/j.sciaf.2023.e01549
  • 11. Chowdhury, A., Naz, A., Maiti, S.K. 2021. Bioaccumulation of potentially toxic elements in three mangrove species and human health risk due to their ethnobotanical uses. Environ. Sci. Pollut. Res. Int., 28(25): 33042–33059. https://doi.org/10.1007/S11356-021-12566-W
  • 12. Collin, S., Baskar, A., Geevarghese, D.M., Ali, M.N.V.S., Bahubali, P., Choudhary, R., Lvov, V., Tovar, G.I., Senatov, F., Koppala, S., Swamiappan, S. 2022. Bioaccumulation of lead (Pb) and its effects in plants: A review. J. Hazard. Mater. Lett., 3: 100064. https://doi.org/10.1016/J.HAZL.2022.100064
  • 13. Čurlík, J., Kolesár, M., ɰurža, O., Hiller, E. 2016. Dandelion (Taraxacum officinale) and Agrimony (Agrimonia eupatoria) as Indicators of Geogenic Contamination of Flysch Soils in Eastern Slovakia. Arch. Environ. Contam. Toxicol., 70(3): 475–486. https://doi.org/10.1007/S00244-015-0206-Z
  • 14. Dalimunthe, S.H., Damayanto, I.P.P.G., Martiansyah, I., Tihurua, E.F., Rahmawati, K., Fastanti, F.S., Muhaimin, M. 2023. Pollen Micromorphology of Mangrove Species in South Sumatera Coastal Area, Indonesia. 52(9): 2499–2511. https://doi.org/10.17576/JSM-2023-5209-03
  • 15. Das, L., Patel, R., Salvi, H., Kamboj, R.D. 2019. Assessment of natural regeneration of mangrove with reference to edaphic factors and water in Southern Gulf of Kachchh, Gujarat, India. 5(8). https://doi.org/10.1016/J.HELIYON.2019.E02250
  • 16. Dhalaria, R., Kumar, D., Kumar, H., Nepovimova, E., Kuca, K., Islam, M.T., Verma, R. 2020. Arbuscular mycorrhizal fungi as potential agents in ameliorating heavy metal stress in plants. Agron. 10(6): 815. https://doi.org/10.3390/AGRONOMY10060815
  • 17. Dolagaratz Carricavur, A., Chiodi Boudet, L., Romero, M.B., Polizzi, P., Marcovecchio, J.E., Gerpe, M. 2018. Toxicological responses of Laeonereis acuta (Polychaeta, Nereididae) after acute, subchronic and chronic exposure to cadmium. Ecotoxicol. Environ. Saf., 149: 217–224. https://doi.org/10.1016/j.ecoenv.2017.11.048
  • 18. Esther Hellen, L. 2016. Heavy Metal Levels in Soil, Tomatoes and Selected Vegetables from Morogoro Region, Tanzania. Int. J. Environ. Monit. Anal., 4(3): 82. https://doi.org/10.11648/J.IJEMA.20160403.13
  • 19. Feng, D., Wang, R., Sun, X., Liu, L., Liu, P., Tang, J., Zhang, C., Liu, H. 2023. Heavy metal stress in plants: Ways to alleviate with exogenous substances. Sci. Total Environ., 897: 165397. https://doi.org/10.1016/J.SCITOTENV.2023.165397
  • 20. Fitria, Y., Rozirwan, Fitrani, M., Nugroho, R.Y., Fauziyah, Putri, W.A.E. 2023. Gastropods as bioindicators of heavy metal pollution in the Banyuasin estuary shrimp pond area, South Sumatra, Indonesia. Acta Ecol. Sin., https://doi.org/10.1016/J.CHNAES.2023.05.009
  • 21. Gao, W., Hodgkinson, L., Jin, K., Watts, C.W., Ashton, R.W., Shen, J., Ren, T., Dodd, I.C., Binley, A., Phillips, A.L., Hedden, P., Hawkesford, M. J., Whalley, W. R. 2016. Deep roots and soil structure. Plant. Cell Environ., 39(8): 1662. https://doi.org/10.1111/PCE.12684
  • 22. Giesen, W., Wulffraat, S., Zieren, M., Scholten, L. 2007. Mangrove guidebook for Southeast Asia. In Mangrove guidebook for Southeast Asia. FAO Regional Office for Asia and the Pacific.
  • 23. Gopal, V., Krishnamurthy, R.R., Vignesh, R., Sabari Nathan, C., Anshu, R., Kalaivanan, R., Mohana, P., Magesh, N.S., Manikanda Bharath, K., Ekoa Bessa, A.Z., Abdelrahman, K., Abioui, M. 2023. Assessment of heavy metal contamination in the surface sediments of the Vedaranyam coast, Southern India. Reg. Stud. Mar. Sci., 65: 103081. https://doi.org/10.1016/J.RSMA.2023.103081
  • 24. Guo, Z., Gao, Y., Yuan, X., Yuan, M., Huang, L., Wang, S., Liu, C., Duan, C. 2023. Effects of heavy metals on stomata in plants: a review. Int. J. Mol. Sci., 24(11). https://doi.org/10.3390/IJMS24119302
  • 25. Hakanson, L. 1980. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res., 14(8): 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8
  • 26. Hao, S., Su, W., Li, Q.Q. 2021. Adaptive roots of mangrove Avicennia marina: Structure and gene expressions analyses of pneumatophores. Sci. Total Environ., 757: 143994. https://doi.org/10.1016/J.SCITOTENV.2020.143994
  • 27. Hao, Y., Miao, X., Liu, H., Miao, D. 2021. The variation of heavy metals bioavailability in sediments of liujiang river basin, sw china associated to their speciations and environmental fluctuations, a field study in typical karstic river. Int. J. Environ. Res. Public Health, 18(8). https://doi.org/10.3390/ IJERPH18083986/S1
  • 28. Harahap, S.A., Yuliadi, L.P.S., Sinulingga, J. N. 2020. Surficial sedimentary at the bottom in waters surrounding the arisen land of Putri Island, Karawang - Indonesia. World Sci. News, 151(2021): 95–109. http://www.worldscientificnews.com/wp-content/uploads/2020/10/WSN-151-2021-95-109.pdf
  • 29. Hewindati, Y.T., Suhardi, D.A., Zuhairi, F.R., Diki, Yuliana, E. 2022. Occurrence of heavy metals Cu, Pb, and Cd in Rhizophora apiculata and Sonneratia caseolaris in the coastal area of Subang, West Java, Indonesia. 23(12): 6471–6479. https://doi.org/10.13057/biodiv/d231246
  • 30. Hogarth, P.J. 2013. Mangrove Ecosystems. In Encyclopedia of Biodiversity: second edition (pp. 10 – 22). Academic Press. https://doi.org/10.1016/B978-0-12-384719-5.00247-1
  • 31. Hossain Bhuiyan, M.A., Chandra Karmaker, S., Saha, B.B. 2022. Nexus between potentially toxic elements accumulation and seasonal/anthropogenic influences on mangrove sediments and ecological risk in Sundarbans, Bangladesh: An approach from GIS, self-organizing map, conditional inference tree and random forest models. Environ. Pollut., 309: 119765. https://doi.org/10.1016/J.ENVPOL.2022.119765
  • 32. Hossain, M.B., Masum, Z., Rahman, M.S., Yu, J., Noman, M.A., Jolly, Y.N., Begum, B.A., Paray, B. A., Arai, T. 2022. Heavy metal accumulation and phytoremediation potentiality of some selected mangrove species from the world’s largest mangrove forest. Biology (Basel)., 11(8): 1144. https://doi.org/10.3390/BIOLOGY11081144/S1
  • 33. Huang, R., Zeng, J., Zhao, D., Cook, K.V., Hambright, K.D., Yu, Z. 2020. Sediment microbiomes associated with the rhizosphere of emergent macrophytes in a shallow, subtropical lake. Limnol. Oceanogr., 65(S1): S38–S48. https://doi.org/10.1002/lno.11325
  • 34. Hummel, C.A., Mellink, Y.A.M., Bienfait, L.J., Adamescu, M.C., Cazacu, C., Heurich, M., Medina, F.M., Morkūnė, R., Švajda, J., Hummel, H. 2021. A practical novel assessment tool for the socio-ecological condition of Protected Areas: The Protection Level Index (PLI). J. Nat. Conserv., 64: 126065. https://doi.org/10.1016/J.JNC.2021.126065
  • 35. Jiang, H.H., Cai, L.M., Wen, H.H., Luo, J. 2020. Characterizing pollution and source identification of heavy metals in soils using geochemical baseline and PMF approach. Sci. Rep., 10(1): 1–11. https://doi.org/10.1038/s41598-020-63604-5
  • 36. Khan, B.N., Ullah, H., Ashfaq, Y., Hussain, N., Atique, U., Aziz, T., Alharbi, M., Albekairi, T. H., Alasmari, A.F. 2023. Elucidating the effects of heavy metals contamination on vital organ of fish and migratory birds found at fresh water ecosystem. 9(11): 2405–8440. https://doi.org/10.1016/J.HELIYON.2023.E20968
  • 37. Kim, R.Y., Yoon, J.K., Kim, T.S., Yang, J.E., Owens, G., Kim, K.R. 2015. Bioavailability of heavy metals in soils: definitions and practical implementationa critical review. Environ. Geochemistry Heal. 2015 376, 37(6): 1041–1061. https://doi.org/10.1007/S10653-015-9695-Y
  • 38. Li, X., Zhang, J., Gong, Y., Liu, Q., Yang, S., Ma, J., Zhao, L., Hou, H. 2020. Status of copper accumulation in agricultural soils across China (1985–2016). Chemosphere, 244: 125516. https://doi.org/10.1016/J.CHEMOSPHERE.2019.125516
  • 39. Lin, Z., Zhong, C., Yu, G., Fu, Y., Guan, B., Liu, Z., Yu, J. 2021. Effects of sediments phosphorus inactivation on the life strategies of myriophyllum spicatum: Implications for lake restoration. 13(15). https://doi.org/10.3390/w13152112
  • 40. Luthansa, U.M., Titah, H.S., Pratikno, H. 2021a. The ability of mangrove plant on lead phytoremediation at Wonorejo Estuary, Surabaya, Indonesia. J. Ecol. Eng., 22(6): 253–268. https://doi.org/10.12911/22998993/137675
  • 41. Luthansa, U.M., Titah, H.S., Pratikno, H. 2021b. The ability of mangrove plant on lead phytoremediation at Wonorejo Estuary, Surabaya, Indonesia. J. Ecol. Eng., 22(6): 253–268. https://doi.org/10.12911/22998993/137675
  • 42. Maiti, S.K., Ghosh, D., Raj, D. 2022. Phytoremediation of fly ash: bioaccumulation and translocation of metals in natural colonizing vegetation on fly ash lagoons. Handb. Fly Ash, 501–523. https://doi.org/10.1016/B978-0-12-817686-3.00011-6
  • 43. Maulana, F., Muhiddin, A.H., Lanuru, M., Samad, W., Ukkas, M. 2023. Distribution of bottom sediment before and after reclamation at center point of Indonesia (Cpi) Makassar City. J. Ilmu Kelaut. SPERMONDE, 9(1): 10–19. https://doi.org/10.20956/jiks.v9i1.19929
  • 44. Meiyerani, J., Melki, M., Aryawati, R., Rozirwan, R., Ningsih, E.N., Wulandari, T.N.M., Nugroho, R.Y. 2024. 16S rRNA gen analysis of plastic destruction bacteries, South Sumatra, Indonesia. J. Ecol. Eng., 25(3): 85–95. https://doi.org/10.12911/22998993/178272
  • 45. Mitra, S., Chakraborty, A.J., Tareq, A.M., Emran, T. Bin, Nainu, F., Khusro, A., Idris, A.M., Khandaker, M.U., Osman, H., Alhumaydhi, F.A., SimalGandara, J. 2022. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud Univ. - Sci., 34(3): 101865. https://doi.org/10.1016/J.JKSUS.2022.101865
  • 46. Mondal, S., Ghosh, D., Ramakrishna, K. 2016. A complete profile on blind-your-eye mangrove Excoecaria agallocha L. (Euphorbiaceae): Ethnobotany, phytochemistry, and pharmacological aspects. Pharmacogn. Rev., 10(20): 123–138. https://doi.org/10.4103/0973-7847.194049
  • 47. Mosa, A., Selim, E.M. M., El-Kadi, S.M., Khedr, A.A., Elnaggar, A.A., Hefny, W.A., Abdelhamid, A. S., El Kenawy, A. M., El-Naggar, A., Wang, H., Shaheen, S. M. 2022. Ecotoxicological assessment of toxic elements contamination in mangrove ecosystem along the Red Sea coast, Egypt. Mar. Pollut. Bull., 176: 113446. https://doi.org/10.1016/J.MARPOLBUL.2022.113446
  • 48. Muller, G. 1969. Index of geo‐accumulation in sediments of the Rhine river – ScienceOpen. J. Geol.,. https://www.scienceopen.com/document?vid=4b875795-5729-4c05-981364951e2ca488
  • 49. Nagarajan, R., Anandkumar, A., Hussain, S.M., Jonathan, M.P., Ramkumar, M., Eswaramoorthi, S., Saptoro, A., Chua, H. B. 2019. Geochemical characterization of Beach Sediments of Miri, NW Borneo, SE Asia: Implications on Provenance, weathering intensity, and assessment of coastal environmental status. Coast. Zo. Manag. Glob. Perspect. Reg. Process. Local Issues, 279–330. https://doi.org/10.1016/B978-0-12-814350-6.00012-4
  • 50. Najamuddin, Inayah, Labenua, R., Samawi, M.F., Yaqin, K., Paembonan, R.E., Ismail, F., Harahap, Z. A. 2023. Distribution of heavy metals Hg, Pb, and Cr in the coastal waters of small islands of Ternate, Indonesia. Acta Ecol. Sin.,. https://doi.org/10.1016/J.CHNAES.2023.09.002
  • 51. Nnaji, N.D., Onyeaka, H., Miri, T., Ugwa, C. 2023. Bioaccumulation for heavy metal removal: a review. SN Appl. Sci., 5(5): 1–12. https://doi.org/10.1007/S42452-023-05351-6/METRICS
  • 52. Ogundele, D., Adio, A., Oludele, O. 2015. Heavy metal concentrations in plants and soil along heavy traffic roads in North Central Nigeria. J. Environ. Anal. Toxicol., 5(6): 6–10. https://doi.org/10.4172/2161-0525.1000334
  • 53. Poppe, L.J., Eliason, A.H. 2008. A Visual Basic program to plot sediment grain-size data on ternary diagrams $. Comput. Geosci., 34: 561–565. https:// doi.org/10.1016/j.cageo.2007.03.019
  • 54. Ragavan, P., Ravichandran, K., Mohan, P.M., Sxaena, A., Prasanth, R.S., Jayaraj, R.S.C., Saravanan, S. 2015. Short communication: Note on Excoecaria indica (Willd.) Muell.-Arg, 1863 (Euphorbiaceae), from the Andaman and Nicobar Islands, India; a data deficient species. 16(1): 22–26. https://doi.org/10.13057/biodiv/d160104
  • 55. Raj, K., Das, A. P. 2023. Lead pollution: Impact on environment and human health and approach for a sustainable solution. Environ. Chem. Ecotoxicol., 5: 79–85. https://doi.org/10.1016/J.ENCECO.2023.02.001
  • 56. Rezaei, M., Kafaei, R., Mahmoodi, M., Sanati, A.M., Vakilabadi, D.R., Arfaeinia, H., Dobaradaran, S., Sorial, G.A., Ramavandi, B., Boffito, D.C. 2021. Heavy metals concentration in mangrove tissues and associated sediments and seawater from the north coast of Persian Gulf, Iran: Ecological and health risk assessment. Environ. Nanotechnology, Monit. Manag., 15(April): 100456. https://doi.org/10.1016/j.enmm.2021.100456
  • 57. Rezapour, S., Moazzeni, H. 2016. Assessment of the selected trace metals in relation to long-term agricultural practices and landscape properties. Int. J. Environ. Sci. Technol., 13(12): 2939–2950. https://doi.org/10.1007/S13762-016-1146-5/METRICS
  • 58. Robin, S.L., Marchand, C., Ham, B., Pattier, F., Laporte-Magoni, C., Serres, A. 2021. Influences of species and watersheds inputs on trace metal accumulation in mangrove roots. Sci. Total Environ., 787: 147438. https://doi.org/10.1016/J.SCITOTENV.2021.147438
  • 59. Romano, E., Magno, M.C., Bergamin, L. 2017. Grain size data analysis of marine sediments, from sampling to measuring and classifying. A critical review. IMEKO TC19 Work. Metrol. Sea, MetroSea 2017 Learn. to Meas. Sea Heal. Parameters, 2017-Octob: 173–178.
  • 60. Rozirwan, Az-Zahrah, S. A.F., Khotimah, N.N., Nugroho, R.Y., Putri, W.A.E., Fauziyah, Melki, Agustriani, F., Siregar, Y.I. 2024. Ecological risk assessment of heavy metal (Pb, Cu) contamination in water, sediment, and Polychaeta (Neoleanira tetragona) from coastal areas affected by aquaculture, urban rivers, and ports in South Sumatra. J. Ecol. Eng., 25(1): 303319. https://doi.org/10.12911/22998993/175365
  • 61. Rozirwan, Fauziyah, F., Nugroho, R.Y., Melki, M., Ulqodry, T.Z., Agustriani, F., Ningsih, E. N., Ayu, W., Putri, E., Absori, A., Iqbal, M. 2022a. An ecological assessment of crab’s diversity among habitats of migratory birds at berbak-sembilang national park Indonesia. Int. J. Conserv. Sci., 13(3). www.ijcs.ro
  • 62. Rozirwan, Fauziyah, Wulandari, P.I., Nugroho, R.Y., Agutriani, F., Agussalim, A., Supriyadi, F., Iskandar, I. 2022b. Assessment distribution of the phytoplankton community structure at the fishing ground, Banyuasin estuary, Indonesia. Acta Ecol. Sin. https://doi.org/10.1016/J.CHNAES.2022.02.006
  • 63. Rozirwan, Khotimah, N.N., Putri, W.A.E., Fauziyah, Aryawati, R., Damiri, N., Isnaini, Nigr. 2023f. Environmental risk assessment of Pb, Cu, Zn, and Cd concentrations accumulated in selected mangrove roots and surrounding their sediment. 24(12): 67336742. https://doi.org/10.13057/biodiv/d241236
  • 64. Rozirwan, Melki, Apri, R., Nugroho, R.Y., Fauziyah, Agussalim, A., Iskandar, I. 2021. Assessment of phytoplankton community structure in musi estuary, south sumatra, indonesia. AACL Bioflux, 14(3): 1451–1463.
  • 65. Rozirwan, Muda, H.I., Ulqodry, T.Z. 2020. Short communication: Antibacterial potential of actinomycetes isolated from mangrove sediment in Tanjung api-api, South Sumatra, Indonesia. 21(12): 57235728. https://doi.org/10.13057/biodiv/d211232
  • 66. Rozirwan, R., Bahrudin, I., Barus, B. S., Nugroho, R. Y., Khotimah, N.N. 2023e. First assesment of coral Mussidae in Kelagian Island waters, Lampung. Proc. 9TH Int. Symp. Innov. Bioprod. Indones. Biotechnol. Bioeng. 2022 Strength. Bioeconomy through Appl. Biotechnol. Bioeng. Biodivers., 2972(1): 040008. https://doi.org/10.1063/5.0171642/2931856
  • 67. Rozirwan, R., Hananda, H., Nugroho, R.Y., Apri, R., Khotimah, N.N., Fauziyah, F., Putri, W. A.E., Aryawati, R. 2023c. Antioxidant activity, total phenolic, phytochemical content, and HPLC profile of selected mangrove species from Tanjung Api-Api Port Area, South Sumatra, Indonesia. Trop. J. Nat. Prod. Res. Available, 7(7): 3482–3489.
  • 68. Rozirwan, R., Muhtadi, M., Ulqodry, T.Z., Nugroho, R.Y., Khotimah, N.N., Fauziyah, F., Putri, W. A. E., Aryawati, R., Mohamed, C. A. R. 2023a. Insecticidal activity and phytochemical profiles of avicennia marina and excoecaria agallocha leaves extracts. ILMU Kelaut. Indones. J. Mar. Sci. Vol 28, No 2 Ilmu KelautanDO - 10.14710/Ik.Ijms.28.2.148-160, 28(June): 148–160. https://doi.org/10.14710/ ik.ijms.28.2.148-160
  • 69. Rozirwan, Ramadani, S., Ayu, W., Putri, E., Nur, N., Nugroho, R.Y. 2023d. Evaluation of calcium and phosphorus content in Scallop Shells ( Placuna placenta ) and Blood Cockle Shells ( Anadara granosa ) from Banyuasin Waters, South Sumatra. Egypt. J. Aquat. Biol. Fish. Zool. Dep. Fac. Sci., 27(3): 1053–1068.
  • 70. Rozirwan, Saputri, A.P., Nugroho, R.Y., Khotimah, N.N., Putri, W.A.E., Fauziyah, Purwiyanto, A.I.S. 2023b. An Assessment of Pb and Cu in waters, sediments, and mud crabs (Scylla serrata) from mangrove ecosystem near tanjung Api-Api Port Area, South Sumatra, Indonesia. Sci. Technol. Indones., 8(4): 675683. https://doi.org/10.26554/sti.2023.8.4.675-683
  • 71. Saputra, A., Nugroho, R.Y., Isnaini, R., Rozirwan. 2021. A review: The potential of microalgae as a marine food alternative in Banyuasin Estuary, South Sumatra, Indonesia. Egypt. J. Aquat. Biol. Fish., 25(2): 1053–1065. https://doi.org/10.21608/EJABF.2021.170654
  • 72. Schauss, A.G. 2016. Advances in the study of the health benefits and mechanisms of action of the pulp and seed of the Amazonian palm fruit, Euterpe oleracea Mart., known as “Açai.” Fruits, Veg. Herbs Bioact. Foods Heal. Promot., 179–220. https://doi. org/10.1016/B978-0-12-802972-5.00010-X
  • 73. Shabbir, Z., Sardar, A., Shabbir, A., Abbas, G., Shamshad, S., Khalid, S., Natasha, Murtaza, G., Dumat, C., Shahid, M. 2020. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere, 259: 127436. https://doi.org/10.1016/J.CHEMOSPHERE.2020.127436
  • 74. Shaheen, S.M., Abdelrazek, M.A.S., Elthoth, M., Moghanm, F.S., Mohamed, R., Hamza, A., El-Habashi, N., Wang, J., Rinklebe, J. 2019. Potentially toxic elements in saltmarsh sediments and common reed (Phragmites australis) of Burullus coastal lagoon at North Nile Delta, Egypt: A survey and risk assessment. Sci. Total Environ., 649: 1237–1249. https://doi.org/10.1016/J.SCITOTENV.2018.08.359
  • 75. Shaheen, S.M., Shams, M S., Khalifa, M.R., ElDali, M.A., Rinklebe, J. 2017. Various soil amendments and environmental wastes affect the (im)mobilization and phytoavailability of potentially toxic elements in a sewage effluent irrigated sandy soil. Ecotoxicol. Environ. Saf., 142: 375–387. https://doi.org/10.1016/J.ECOENV.2017.04.026
  • 76. Siraj, M.A., Medha, M.M., Nahar, A.U., Islam, M.A., Seidel, V. 2023. Mangrove endophytes and their natural metabolites: role in promoting plant health. Microb. Endophytes Plant Growth, 99–116. https://doi.org/10.1016/B978-0-323-90620-3.00015-5
  • 77. Skuza, L., Szućko-Kociuba, I., Filip, E., Bożek, I. 2022. Natural molecular mechanisms of plant hyperaccumulation and hypertolerance towards heavy metals. Int. J. Mol. Sci., 23(16). https://doi.org/10.3390/IJMS23169335
  • 78. Song, Y., Choi, M.S., Lee, J.Y., Jang, D.J. 2014. Regional background concentrations of heavy metals (Cr, Co, Ni, Cu, Zn, Pb) in coastal sediments of the South Sea of Korea. Sci. Total Environ., 482–483(1): 80–91. https://doi.org/10.1016/J.SCITOTENV.2014.02.068
  • 79. Stachew, E., Houette, T., Gruber, P. 2021. Root systems research for bioinspired resilient design: a concept framework for foundation and coastal engineering. Front. Robot. AI, 8: 548444. https://doi.org/10.3389/FROBT.2021.548444/BIBTEX
  • 80. Szafranski, G.T., Granek, E.F. 2023. Contamination in mangrove ecosystems: A synthesis of literature reviews across multiple contaminant categories. Mar. Pollut. Bull., 196: 115595. https://doi.org/10.1016/J.MARPOLBUL.2023.115595
  • 81. Wang, Y., Qiu, Q., Xin, G., Yang, Z., Zheng, J., Ye, Z., Li, S. 2013. Heavy metal contamination in a vulnerable mangrove swamp in South China. Environ. Monit. Assess., 185(7): 5775–5787. https://doi.org/10.1007/s10661-012-2983-4
  • 82. WHO. 1996. World Health Organization on Heavy metals -Permissible limits of heavy metals in soil and plants (Geneva: World Health Organization), Switzerland.
  • 83. Yadav, K.K., Gupta, N., Prasad, S., Malav, L.C., Bhutto, J.K., Ahmad, A., Gacem, A., Jeon, B. H., Fallatah, A.M., Asghar, B.H., Cabral-Pinto, M.M.S., Awwad, N.S., Alharbi, O.K.R., Alam, M., Chaiprapat, S. 2023. An eco-sustainable approach towards heavy metals remediation by mangroves from the coastal environment: A critical review. Mar. Pollut. Bull., 188: 114569. https://doi.org/10.1016/J.MARPOLBUL.2022.114569
  • 84. Yousif, R., Choudhary, M.I., Ahmed, S., Ahmed, Q. 2021. Review: Bioaccumulation of heavy metals in fish and other aquatic organisms from Karachi Coast, Pakistan. Nusant. Biosci., 13(1): 73–84. https://doi.org/10.13057/nusbiosci/n130111
  • 85. Ytreberg, E., Hansson, K., Hermansson, A.L., Parsmo, R., Lagerström, M., Jalkanen, J.P., Hassellöv, I. M. 2022. Metal and PAH loads from ships and boats, relative other sources, in the Baltic Sea. Mar. Pollut. Bull., 182: 113904. https://doi.org/10.1016/J.MARPOLBUL.2022.113904
  • 86. Yuce, M., Ekinci, M., Turan, M., Agar, G., Aydin, M., Ilhan, E., Yildirim, E. 2024. Chrysin mitigates copper stress by regulating antioxidant enzymes activity, plant nutrient and phytohormones content in pepper. Sci. Hortic. (Amsterdam)., 328: 112887. https://doi.org/10.1016/J.SCIENTA.2024.112887
  • 87. Zaynab, M., Al-Yahyai, R., Ameen, A., Sharif, Y., Ali, L., Fatima, M., Khan, K.A., Li, S. 2022. Health and environmental effects of heavy metals. J. King Saud Univ. - Sci., 34(1): 101653. https://doi.org/10.1016/J.JKSUS.2021.101653
  • 88. Zhang, C., Yu, Z. Gang, Zeng, G. Ming, Jiang, M., Yang, Z. Zhu, Cui, F., Zhu, M. Ying, Shen, L. Ging, Hu, L. 2014. Effects of sediment geochemical properties on heavy metal bioavailability. Environ. Int., 73: 270–281. https://doi.org/10.1016/j.envint.2014.08.010
  • 89. Zheng, R., Liu, Y., Zhang, Z. 2023. Trophic transfer of heavy metals through aquatic food web in the largest mangrove reserve of China. Sci. Total Environ., 899: 165655. https://doi.org/10.1016/J.SCITOTENV.2023.165655
  • 90. Zhong, W.S., Ren, T., Zhao, L.J. 2016. Determination of Pb (Lead), Cd (Cadmium), Cr (Chromium), Cu (Copper), and Ni (Nickel) in Chinese tea with high-resolution continuum source graphite furnace atomic absorption spectrometry. J. Food Drug Anal., 24(1): 46–55. https://doi.org/10.1016/J.JFDA.2015.04.010
  • 91. Zürcher, E., Müller, B. 2016. Cytokinin Synthesis, Signaling, and Function – Advances and New Insights. Int. Rev. Cell Mol. Biol., 324: 1–38. https://doi.org/10.1016/BS.IRCMB.2016.01.001
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f20195d-fb6f-405d-adb0-87f8843219c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.