PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Practical guidelines for predicting the proper conditions of high-energy mixing in a planetary ball mill towards powder flow improvement

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work Response Surface Methodology and Central Composite Rotatable Design were applied to find high-energy mixing process parameters enabling flow properties of highly cohesive Disulfiram powder to be improved. Experiments were conducted in a planetary ball mill. The response functions were created for an angle of repose and compressibility index as measures of powder flowability. To accomplish an optimisation procedure of mixing process parameters according to a desirability function approach, the results obtained earlier for potato starch, as another cohesive coarse powder, were also employed. Coupling these results with those achieved in a previous work, it was possible to develop some guidelines of practical importance allowing mixing conditions to be predicted towards flow improvement of fine and coarse powders.
Rocznik
Strony
419--–433
Opis fizyczny
Bibliogr. 22 poz., tab., rys.
Twórcy
  • Department of Chemical and Process Engineering, Rzeszow University of Technology, al. Powstańców Warszawy 6, 35-959 Rzeszow, Poland
  • Department of Chemical and Process Engineering, Rzeszow University of Technology, al. Powstańców Warszawy 6, 35-959 Rzeszow, Poland
Bibliografia
  • 1. Al-Hashemi H.M.B., Baghabra Al-Amoudi O.S., 2018. A review on the angle of repose of granular materials. Powder Technol., 330, 397–417. DOI: 10.1016/j.powtec.2018.02.003.
  • 2. Aslan N., 2008. Application of response surface methodology and central composite rotatable design for modeling and optimization of a multi-gravity separator for chromite concentration. Powder Technol., 185, 80–86. DOI: 10.1016/J.POWTEC.2007.10.002.
  • 3. Broseghini M., Gelisio L., D’Incau M., Azanza Ricardo C.L., Pugno N.M., Scardia P., 2016. Modeling of the planetary ball-milling process: The case study of ceramic powders. J. Eur. Ceram. Soc., 36, 2205–2212. DOI: 10.1016/j.jeurceramsoc.2015.09.032.
  • 4. Burmeister C.F., Kwade A., 2013. Process engineering with planetary ball millss. Chem. Soc. Rev., 42, 7660–7667. DOI: 10.1039/c3cs35455e.
  • 5. Evonik Resource Efficiency Gmbh, 2018. AEROSIL ®200 Hydrophilic fumed silica. Fokina E.L., Budim N.I., Kochnev V.G., Chernik G.G., 2004. Planetary mills of periodic and continuous action. J. Mater. Sci., 39, 5217–5221. DOI: 10.1023/B:JMSC.0000039213.44891.7d.
  • 6. Fokina E.L., Budim N.I., Kochnev V.G., Chernik G.G., 2004. Planetary mills of periodic and continuous action. J. Mater. Sci., 39, 5217–5221. DOI: 10.1023/B:JMSC.0000039213.44891.7d
  • 7. Jallo L.J., Ghoroi C., Gurumurthy L., Patel U., Davé R.N., 2012. Improvement of flow and bulk density of pharmaceutical powders using surface modification. Int. J. Pharm., 423, 213–225. DOI: 10.1016/J.IJPHARM. 2011.12.012.
  • 8. Jing G., Zhong Y., Zhang L., Gou J., Ji X., Huang H., Zhang Y., Wang Y., He H., Tang X., 2015. Increased dissolution of disulfiram by dry milling with silica nanoparticles. Drug Dev. Ind. Pharm., 41, 1328–1337. DOI: 10.3109/03639045.2014.949266.
  • 9. Kragh H., 2008. From disulfiram to antabuse: The invention of a drug. Bull. Hist. Chem., 33, 82–88.
  • 10. Leś K., Kowalski K., Opaliński I., 2015. Optimisation of process parameters in high energy mixing as a method of cohesive powder flow ability improvement. Chem. Process. Eng., 36, 449–460. DOI: 10.1515/cpe-2015-032.
  • 11. Leś K., Kozdra S., Opaliński I., 2017. Optimization of flow indices by response surface methodology in high-energy mixing of powders Optymalizacja parametrów sypkości metodą powierzchni odpowiedzi w procesie wysokoen- ergetycznego mieszania materiałów proszkowych. Przem. Chem., 1, 223–226. DOI: 10.15199/62.2017.2.40.
  • 12. Leś K., Opaliński I., 2021. Prospective application of response surface methodology for predicting high-energy mixing process conditions towards fine powders flow improvement. Adv. Sci. Technol. Res. J., 15, 134–143. DOI: 10.12913/22998624/130897.
  • 13. Mio H., Kano J., Saito F., 2004. Scale-up method of planetary ball mill. Chem. Eng. Sci., 59, 5909–5916. DOI: 10.1016/j.ces.2004.07.020. Pfeffer R., Dave R.N., Wei D., Ramlakhan M., 2001. Synthesis of engineered particulates with tailored properties using dry particle coating. Powder Technol., 117, 40–67. DOI: 10.1016/S0032-5910(01)00314-X.
  • 14. Pfeffer R., Dave R.N., Wei D., Ramlakhan M., 2001. Synthesis of engineered particulates with tailored properties using dry particle coating. Powder Technol., 117, 40–67. DOI: 10.1016/S0032-5910(01)00314-X.
  • 15. Qu L., Zhou Q., Denman J.A., Stewart P.J., Hapgood K.P., Morton D.A.V., 2015. Influence of coating material on the flowability and dissolution of dry-coated fine ibuprofen powders. Eur. J. Pharm. Sci., 78, 264–272. DOI: 10.1016/J.EJPS.2015.07.016.
  • 16. Rosenkranz S., Breitung-Faes S., Kwade A., 2011. Experimental investigations and modelling of the ball motion in planetary ball mills. Powder Technol., 212, 224–230. DOI: 10.1016/j.powtec.2011.05.021.
  • 17. Sandberg T., Rosenholm J., Hotokka M., 2008. The molecular structure of disulfiram and its complexation with silica. A quantum chemical study. J. Mol. Struct. THEOCHEM, 861, 57–61. DOI: 10.1016/J.THEOCHEM.2008.04.007.
  • 18. Sonoda R., Horibe M., Oshima T., Iwasaki T., Watano S., 2008. Improvement of dissolution property of poorly water-soluble drug by novel dry coating method using planetary ball mill. Chem. Pharm. Bull., 56, 1243–1247. DOI: 10.1248/cpb.56.1243.
  • 19. StatSoft Inc., 2013. Big data, data mining, predictive analytics, statistics. StatSoft Electronic textbook. Wibowo C., Ng K.M., 2001. Operational issues in solids processing plants: Systems view. AIChE J., 47, 107–125. DOI: 10.1002/aic.690470112.
  • 20. Wibowo C., Ng K.M., 2001. Operational issues in solids processing plants: Systems view. AIChE J., 47, 107–125. DOI: 10.1002/aic.690470112
  • 21. Zhou Q., Armstrong B., Larson I., Stewart P.J., Morton D.A.V., 2010. Improving Powder flow properties of a cohesive lactose monohydrate powder by intensive mechanical dry coating. J. Pharm. Sci., 99, 969–981. DOI: 10.1002/jps.21885.
  • 22. Zhou Q., Qu L., Larson I., Stewart P.J., Morton D.A.V., 2011. Effect of mechanical dry particle coating on the improvement of powder flowability for lactose monohydrate: A model cohesive pharmaceutical powder. Powder Technol., 207, 414–421. DOI: 10.1016/j.powtec.2010.11.028
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f1f0a1b-2e66-4ab8-9a12-a110896ebae4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.