PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

First-arrival picking through fuzzy c-means and robust locally weighted regression

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
First-arrival picking is a crucial step in seismic data processing. Because of the diverse background noises and irregular near-surface conditions, it is difcult to pick frst arrivals. In addition, existing algorithms are usually sensitive to parameter settings. Therefore, this paper proposes the frst-arrival picking through fuzzy c-means and robust locally weighted regression (FPFR) algorithm consisting of two subroutines. The pre-picking subroutine obtains initial frst arrivals through fuzzy c-means clustering and adaptive cluster-selection techniques. The smoothing subroutine handles background noises and near-ground conditions through adaptive parameter regression technique. The experiment is conducted on six feld seismic datasets and one synthetic dataset. Results show that FPFR is more accurate than three state-of-the-art methods.
Czasopismo
Rocznik
Strony
1623--1636
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
autor
  • School of Computer Science, Southwest Petroleum University, Chengdu 610500, China
autor
  • School of Computer Science, Southwest Petroleum University, Chengdu 610500, China
  • School of Computer Science, Southwest Petroleum University, Chengdu 610500, China
autor
  • School of Sciences, Southwest Petroleum University, Chengdu 610500, China
autor
  • School of Computer Science, Southwest Petroleum University, Chengdu 610500, China
  • Institute for Artifcial Intelligence, Southwest Petroleum University, Chengdu 610500, China
Bibliografia
  • 1. Alam MS, Paul S (2020) A comparative analysis of clustering algorithms to identify the homogeneous rainfall gauge stations of Bangladesh. J Appl Stat 47:1460–1481
  • 2. Allen RV (1978) Automatic earthquake recognition and timing from single traces. Bullet Seismol Soc Am 68:1521–1532
  • 3. Bell AJ, Sejnowski TJ (1994) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7:1129–1159
  • 4. Bezdek JC (2013) Pattern recognition with fuzzy objective function algorithms. Springer, Berlin
  • 5. Boschetti F, Dentith MD, List RD (1996) A fractal-based algorithm for detecting first arrivals on seismic traces. Geophysics 61:1095–1102
  • 6. Chen Y, Zhang G, Bai M, Zu S, Guan Z, Zhang M (2019) Automatic waveform classification and arrival picking based on convolutional neural network. Earth Space Sci 6:1244–1261
  • 7. Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Statist Assoc 74:829–836
  • 8. Coppens F (1985) First arrival picking on common-offset trace collections for automatic estimation of static corrections. Geophys Prospect 33:1212–1231
  • 9. Duan X, Zhang J (2020) Multitrace first-break picking using an integrated seismic and machine learning method. J Geophys 85:WA269–WA277
  • 10. Duan X, Zhang J (2019) Multi-trace and multi-attribute analysis for first-break picking with the support vector machine. In SEG Technical Program Expanded Abstracts, 2559–2563
  • 11. Dunn JC (1973) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J Cybern 3:32–57
  • 12. Gao L, Jiang Z, Min F (2019) First-arrival travel times picking through sliding windows and fuzzy c-means. J Math 7:221
  • 13. Hameed MA, Jamsheela O, Robert BS (2021) Relative performance of Roulette wheel GA and Rank GA is dependent on chromosome parity. Journal Materials Today: Proceedings
  • 14. Hu M, Pan D, Li J, Zhang H, Dong S, Chen S, Xu Y (2019b) 3D-RVSP experimental study above a carbonate outcrop for coal resource exploration. Acta Geophysica 67:95–107
  • 15. Hu L, Zheng X, Duan Y, Hu Y, Zhang X (2019a) First arrival picking with a U-net convolutional network. Geophysics 84:45–57
  • 16. Indi MWP, Novianty A, Prasasti AL (2020) Automatic first arrival picking on P-wave seismic signal using support vector machine method. In booktitle2020 8th International Conference on Information and Communication Technology (ICoICT) (1–6)
  • 17. Jacoby WG (2000) Loess: a nonparametric, graphical tool for depicting relationships between variables. Electoral Stud 19:577–613
  • 18. Ji Z, Xia Y, Chen Q, Sun Q, Xia D, Feng DD (2012) Fuzzy c-means clustering with weighted image patch for image segmentation. Appl Soft Comput 12:1659–1667
  • 19. Katarya R, Verma OP (2017) Effectual recommendations using artificial algae algorithm and fuzzy c-mean. Swarm Evol Comput 36:52–61
  • 20. Khalaf A, Camerlynck C, Florsch N, Schneider A (2018) Development of an adaptive multi-method algorithm for automatic picking of first arrival times: application to near surface seismic data. Near Surface Geophys 16:507–526
  • 21. Lee M, Byun J, Kim D, Choi J, Kim M (2017) Improved modified energy ratio method using a multi-window approach for accurate arrival icking. J Appl Geophys 139:1171
  • 22. Liao X, Cao J, Hu J, You J, Jiang X, Liu Z (2019) First arrival time identification using transfer learning with continuous wavelet transform feature images. JournalIEEE Geoscience and Remote Sensing Letters
  • 23. Liu Z, Jia H, Wang Y (2020) Urban expressway parallel pattern recognition based on intelligent IOT data processing for smart city. Comput Commun 155:40–47
  • 24. Loader C (2012) Smoothing: local regression techniques. In: Gentle JE, Härdle WK, Mori Y (eds) Handbook of computational statistics: concepts and methods. Springer, Heidelberg, pp 571–596
  • 25. Ma H, Wang T, Li Y, Meng Y (2018) A time picking method for microseismic data based on LLE and improved PSO clustering algorithm. IEEE Geosci Remote Sens Lett 151:1677–1681
  • 26. Malinowski M (2013) Models of the earth’s crust from controlled-source seismology - where we stand and where we go? Acta Geophysica 61:1437–1456
  • 27. Mashhor AA, Shuhail AA, Hanafy SM (2019) First arrival picking of seismic data based on trace envelope. Access 7:128806–128815
  • 28. Misra S, Swain AK, Panigrahi BK (2009) Estimation of lithologic parameters from seismic data using genetic algorithm. In 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC)
  • 29. Moose PH (1994) A technique for orthogonal frequency division multiplexing frequency offset correction. Trans Commun 42:2908–2914
  • 30. Nurunnabi A, West G, Belton D (2016) Robust locally weighted regression techniques for ground surface points filtering in mobile laser scanning three dimensional point cloud data. Trans Geosci Remote Sens 54:2181–2193
  • 31. Panda S, Sahu S, Jena P, Chattopadhyay S (2012) Comparing fuzzy-c means and k-means clustering techniques: a comprehensive study. In: Wyld DC, Zizka J, Nagamalai D (eds) Advances in computer science, engineering & applications. Springer, Berlin, pp 451–460
  • 32. Pei H, Zheng Z, Wang C, Li C, Shao Y (2017) D-FCM: Density based fuzzy c-means clustering algorithm with application in medical image segmentation. Procedia Comput Sci 122:407–414
  • 33. Peraldi R, Clement A (1972) Digital processing of refraction data study of first arrivals. Geophys Prospect 20:529–548
  • 34. Sabbione JI, Velis D (2010) Automatic first-breaks picking: new strategies and algorithms. Geophysics 75:67–76
  • 35. Senkaya M, Karsli H (2014) A semi-automatic approach to identify first arrival time: the cross-correlation technique (CCT). Earth Sci Res J 18:107–113
  • 36. Shuhail AA (2015) Improving automatic first-arrival picking by supervirtual interferometry: examples from Saudi Arabia. Arab J Geosci 8:8731–8740
  • 37. Song J, Cao X, Xu W, Yang J (2013) First arrival time auto-picking method based on multi-time windows energy ratio. Energy Sci Technol 6:79–89
  • 38. Wang Q, Wang X, Fang C, Yang W (2020) Robust fuzzy c-means clustering algorithm with adaptive spatial & intensity constraint and membership linking for noise image segmentation. J Appl Soft Comput 92:106318
  • 39. Wilson D, Leon J, Aster R, Ni J, Schlue J, Grand S, Semken S, Baldridge S, Gao W (2002) Broadband seismic background noise at temporary seismic stations observed on a regional sscale in the southwestern united states. J Bullet Ssmol Soc Am 92:3335–3342
  • 40. Wong J, Han L, Bancroft JC, Stewart RR (2009) Automatic time-picking of first arrivals on noisy microseismic data. Can J Explor Geophys 1:1–4
  • 41. Yilmaz O (2001) Seismic data analysis: processing, inversion, and interpretation of seismic data. Society of Exploration Geophysicists, USA
  • 42. Zhu M, Cheng J (2019) The effect of P- and S-phase arrivals on the accuracy of microseismic source location. J Appl Geophys 164:130–139
  • 43. Zhu D, Li Y, Zhang C (2016) Automatic time picking for microseismic data based on a fuzzy c-means clustering algorithm. Geosci Remote Sens Lett 13:1900–1904
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f1df39c-06f0-4d2c-a2e9-76c5c83863a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.