PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Experimental study of nanocomposite hybrid adhesive-rivet joints

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The wide range of rivets usage goes back to the processes of manufacturing and repairing an aircraft fuselage. When it comes to structural joints, adhesive bonding is said to have some merits which overshadow other joining methods, such as bolting, riveting, and welding. Today, the applications of structural adhesives do not end in aerospace, but they also are ideal for the automotive industry, where the need is to join plates of dissimilar adhesives to produce lightweight car bodies. The hybrid joints also are one of the methods of joining different parts of the machine in a durable way in which some benefits such as the significant tensile strength, the dissipated energy, and higher reliability during long-term working stand out. In this research, the effect of rivets layout on strength and failure of nanocomposite rivet and hybrid adhesive-rivet joints through two experimental and numerical methods was evaluated. Also, using the artificial neural networks method, force–displacement curves for specimens were obtained. The results of the experimental tests and the finite element analysis showed that as the number of rivets increased in the joint of the nanocomposite components, the strength of the joint increased. The layout of the rivets has a significant effect on the strength of the rivet joint. According to the performed experiments for achieving the efficient strength in the hybrid joints for the nanocomposite plates, since the strength of the adhesive is very effective, adhesive selection and the appropriate number of rivets are the key factors. The fracture modes in the internal plates of nanocomposite joints (adhesive, rivet, and adhesive-rivet joints) were observed as follows: net-tension, bearing, shear-out, crack propagation, tearing, and shear in adhesive layers. Besides, the numerical model of the work is done using ABAQUS software. The results of software simulation in the numerical model are compatible with the experimental method’s findings. However, the agreement between the results of experimental and neural network methods is higher. Owing to the results of experiments, the polypropylene nanocomposite as well as the appropriate jointing method can be put forward in the structures of the automotive industry.
Rocznik
Strony
337--365
Opis fizyczny
Bibliogr. 85 poz., fot., rys., wykr.
Twórcy
  • Department of Mechanical Engineering Faculty of Engineering, University of Kurdistan, 6617715175 Sanandaj, Iran
  • Department of Mechanical Engineering Faculty of Engineering, University of Kurdistan, 6617715175 Sanandaj, Iran
Bibliografia
  • [1] L.F.M Da Silva, A. Ochsner, Modeling of Adhesively bonded joints, Springer-Verlag Berlin Heidelberg, (2008) ISBN: 978–3–540–79055–6, https://link.springer.com/book/https:// doi. org/ 10. 1007/ 978-3- 540- 79056-3.
  • [2] Zehsaz M, Vakili-Tahami F, Saeimi-Sadigh MA. Creep analysis of adhesively bonded single lap joint using finite element method. J Mech Sci Technol. 2014;28(6):2743–8. https:// doi. org/ 10. 1007/ s12206- 014- 0508-5.
  • [3] M.B. Rodrigues, Analytical and numerical tools for bounded joint analysis, Mechanica Computacional (2010) XXIX:7557–7569. https:// amcao nline. org. ar/ ojs/ index. php/ mc/ artic le/ viewF ile/ 3546/ 3459.
  • [4] Da Silva LFM, Das PLC, Adams NRD, Spelt JK. Analytical models of adhesively bonded Joints-Part II: comparative study. Int J Adhes Adhes. 2009;29:331–41. https:// doi. org/ 10. 1016/j. ijadh adh. 2008. 06. 007.
  • [5] Fernandes TAB, Campilho RGDS, Banea MD, DaSilva LFM. Adhesive selection for single lap bonded joints experimentation and advanced techniques for strength prediction. J Adhes. 2015;91(10–11):841–62. https:// doi. org/ 10. 1080/ 00218 464. 2014. 994703.
  • [6] Nassar SA, Mazhari E. Coupled shear stress-diffusion model for adhesively bonded single lap joints, Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition IMECE2016 November 11–17 (2016), Phoenix, Arizona, USA, IMECE2016–66083, Copyright © 2016 by ASME.
  • [7] Marques GP, Campilho RDSG, da Silva LFM, Moreira RDF. Adhesive selection for hybrid spot-welded /bonded single-lap joints: experimentation and numerical analysis. Compos B. 2016;84:248–57. https:// doi. org/ 10. 1016/j. compo sitesb. 2015. 09. 002.
  • [8] Machado JJM, Nunes PDP, Marques EAS, da Silva LFM. Adhesive joints using aluminum and CFRP substrates tested at low and high temperatures under quasi-static and impact conditions for the automotive industry. Compos B. 2019;158:102–16. https:// doi. org/ 10. 1016/j. compo sitesb. 2018. 09. 067.
  • [9] Sadowski T, Golewski P. Modelling and experimental testing of hybrid joints made of: aluminum adherends, adhesive layers, and rivets for aerospace applications. Arch Metall Mater. 2017;62(3):1577–83. https:// doi. org/ 10. 1515/ amm- 2017- 0241.
  • [10] Yao L, Feng Q, Wan D, Wu L, Yang K, Hou J, Liu B, Wan Q. Experiment and finite element simulation of High strength steel adhesive joint reinforced by rivet for automotive applications. J Adhes Sci Technol (2016) https:// doi. org/ 10. 1080/ 01694 243. 2016. 12668 45.
  • [11] Hu P, Shi ZW, Wang XX, Li WD, Zhou SG, Han X. Strength degradation of adhesively bonded single-lap joints in a cyclic-temperature environment using a cohesive zone model. J Adhes. 2015;91:587–603. https:// doi. org/ 10. 1080/ 00218 464. 2014. 915754.
  • [12] Shishesaz M, Hosseini M. Effects of joint geometry and material on stress distribution, strength, and failure of bonded composite joints: an overview. J Adhes. 2018. https:// doi. org/ 10. 1080/ 00218 464. 2018. 15544 83.
  • [13] Masmanidis IT, Philippidis TP. Progressive damage modeling of adhesively bonded lap joints. Int J Adhes Adhes. 2015;59:53–61. https:// doi. org/ 10. 1016/j. ijadh adh. 2015. 02. 001.
  • [14] Mu W, Qin G, Na J, Tan W, Liu H, Luan J. Effect of alternating load on the residual strength of environmentally aged Adhesively bonded CFRP-aluminum alloy joints. Compos B. 2019;168:87–97. https:// doi. org/ 10. 1016/j. compo sitesb. 2018. 12. 070.
  • [15] Aktas Z. Polat, improving strength performance of adhesively bonded single-lap composite joints. J Compos Mater. 2010;44(24):2919–28. https:// doi. org/ 10. 1177/ 00219 98310 369594.
  • [16] Chen X, Li Y. an experimental technique on the dynamic strength of adhesively bonded single lap joints. J Adhes Sci Technol. 2010;24:291–304. https:// doi. org/ 10. 1163/ 01694 2409X 12529 16019 2106.
  • [17] He X. Influence of boundary conditions on stress distributions in a single-lap adhesively bonded joint. Int J Adhes Adhes. 2014;53:54–43. https:// doi. org/ 10. 1016/j. ijadh adh. 2014. 01. 009.
  • [18] Sekercioglu T. Strength-based reliability of adhesively bonded tubular lap joints. Mater Des. 2007;28:1914–8. https:// doi. org/ 10. 1016/j. matdes. 2006. 04. 004.
  • [19] Khan MH, Gali OA, Edrisy A, Riahi AR. Effect of oxidation and surface roughness on the shear strength of single-lap-joint adhesively bonded metal specimens by tension loading. Appl Adhes Sci. 2016;4(21):1–17. https:// doi. org/ 10. 1186/ s40563- 016- 0077-1.
  • [20] Banea MD, da Silva LFM, Carbas RJC. Debonding on command of adhesive joints for the automotive industry. Int J Adhes Adhes. 2015;59:14–20. https:// doi. org/ 10. 1016/j. ijadh adh. 2015. 01. 014.
  • [21] Jojibabu P, Jagannatham M, Haridoss P, JanakiRam GD, Deshpande AP, Bakshi SR. Effect of different Carbon Nano-fillers on rheological properties and lap shear strength of epoxy adhesive joints. Compos A. 2016;82:53–64. https:// doi. org/ 10. 1016/j. compo sitesa. 2015. 12. 003.
  • [22] Gupta SK, Kumar Shukla D, Ravindra DK, Effect of Nano alumina in the epoxy adhesive on lap shear strength and fracture the toughness of aluminum joints. J Adhes (2019). https:// doi. org/ 10. 1080/ 00218 464. 2019. 16410 88.
  • [23] Akpinar S, Akpinar IA. Effect of nanostructured reinforcement of adhesive on thermal cycling performance of a single-lap joint with composite adherends. Compos B. 2019;175:107106. https:// doi. org/ 10. 1016/j. compo sitesb. 2019. 107106.
  • [24] Giardiello R, Mechanical properties of a reversible adhesive used to separate adhesive joints. Material Design and Processing Communications (2020) 1–6, John Wiley and Sons, Ltd. https:// doi. org/ 10. 1002/ mdp2. 147.
  • [25] Banea MD, da Silva LFM, Campilho RDSG. Effect of temperature on the shear strength of aluminum single Lap bonded joints for high-temperature applications. J Adhes Sci Technol. 2014;28(14–15):1367–81. https:// doi. org/ 10. 1080/ 01694 243. 2012. 697388.
  • [26] Wang Y, He X, Xing B, Deng C. Improvement in the strength of adhesively bonded single-lap joints using reinforcements. J Adhes. 2015;91(6):434–48. https:// doi. org/ 10. 1080/ 00218 464. 2014. 916620.
  • [27] Banea MD, da Silva LFM, Campilho RDSG. The effect of adhesive thickness on the mechanical behavior of a structural polyurethane adhesive. J Adhes. 2014;91(5):331–46. https:// doi. org/ 10. 1080/ 00218 464. 2014. 903802.
  • [28] Xu W, Wei Y. Influence of adhesive thickness on local interface fracture and overall strength of metallic adhesive bonding structures. Int J Adhes Adhes. 2013;40:158–67. https:// doi. org/ 10. 1016/j. ijadh adh. 2012. 07. 012.
  • [29] Da Silva LFM, Rodrigues TNSS, Figueiredo MAV, DeMoura MFSF, Chousal JAG. Effect of adhesive type and the thicknesson the lap shear strength. J Adhes. 2006;82(11):1091–115. https:// doi. org/ 10. 1080/ 00218 46060 09485 11.
  • [30] Kerur S, Shivakumar S, Optimization of Adhesive Joining Process Parameters on Single Lap Shear Strength Properties of Hybrid Metal Polymer Composite Jo Sints. International Conference on Inventive Research in Material Science and Technology AIP Conf Proc 2018 (1966), 020004–1–020004–8. https:// doi. org/ 10. 1063/1. 50386 83.
  • [31] Dos Reis MQ, Banea MD, da Silva LFM, Carbas RJC. Mechanical characterization of a modern epoxy adhesive for the automotive industry. J Braz Soc Mech Sci Eng. 2019;4(340):1–11. https:// doi. org/ 10. 1007/ s40430- 019- 1844-2.
  • [32] Carvalho UTF, Campilho RDSG. Validation of a direct method to predict the strength of adhesively bonded Joints. Sci Technol Mater. 2018;30(3):138–43. https:// doi. org/ 10. 1016/j. stmat. 2017. 12. 002.
  • [33] Rocha RJB, Campilho RDSG, da Silva LCF. Validation of advanced numerical techniques for the strength prediction of adhesively-bonded joints. Procedia Manufact. 2017;13:43–50. https:// doi. org/ 10. 1016/j. promfg. 2017. 09. 007.
  • [34] Banea MD, da Silva LFM, Carbas R, Campilho RDSG. Effect of material on the mechanical behavior of adhesive joints for the automotive industry. J Adhes Sci Technol. 2017;31(6):663–76. https:// doi. org/ 10. 1080/ 01694 243. 2016. 12298 42.
  • [35] Deana G, Crockera L, Reada B, Wright L. Prediction of deformation and failure of rubber-toughened adhesive joints. Int J Adhes Adhes. 2004;24:295–306. https:// doi. org/ 10. 1016/j. ijadh adh. 2003. 08. 002.
  • [36] Karachalios EF, Adams RD, da Silva LFM. Single lap joints loaded in tension with high strength steel adherends. Int J Adhes Adhes. 2013;43:81–95. https:// doi. org/ 10. 1016/j. ijadh adh. 2013. 01. 016.
  • [37] Kim YG, Oh JH, Lee DG. Strength of adhesively-bonded tubular single lap carbon/epoxy composite-steel Joints. J Compos Mater. 1999. https:// doi. org/ 10. 1177/ 00219 98399 03302 003.
  • [38] Jairaja R, Naik GN. Single and dual adhesive bond strength analysis of single lap joint between dissimilar adherends. Int J Adhes Adhes. 2019;92:142–53. https:// doi. org/ 10. 1016/j. ijadh adh. 2019. 04. 016.
  • [39] Yu-qi W, Xiao-Cong H, Bao-Ying X, Sen Z. the research of adhesively-bond of paster single lap joints on strength-based on ANSYS. Adv Mater Res. 2013;785–786:1236–9. https://doi.org/10.4028/www.scientific.net/AMR.785-786.1236.
  • [40] Castagnetti D, Dragoni E. Standard finite element techniques for efficient stress analysis of adhesive joints. Int J Adhes Adhes. 2009;29:125–35. https://doi.org/10.1016/j.ijadhadh.2008.01.005.
  • [41] Pandey PC, Narasimhan S. Three-dimensional nonlinear analysis of adhesively bonded lap joints considering Visco-plasticity in adhesives. Comput Struct. 2001;79:769–83. https:// doi. org/ 10. 1016/ S0045- 7949(00) 00160-7.
  • [42] Nemes O, Lachaud F. Double-lap adhesive bonded-joints assemblies modeling. Int J Adhes Adhes. 2010;30(5):288–97. https:// doi. org/ 10. 1016/j. ijadh adh. 2010. 02. 006.
  • [43] Vattathurvalappil SH, Haq M. Thermomechanical characterization of Nano-Fe3O4 reinforced thermoplastic adhesives and single lap-joints. Compos B. 2019;175(1–9): 107162. https:// doi. org/ 10. 1016/j. compo sitesb. 2019. 107162.
  • [44] Guin WE, Wang J. Theoretical model of adhesively bonded single lap joints with functionally graded adherends. Eng Struct. 2016;124:316–32. https:// doi. org/ 10. 1016/j. engst ruct. 2016. 06. 036.
  • [45] Wu X, He K, Gong Z, Liu Z, Jiang J. the shear strength of composite secondary bonded single-lap joints with different fabrication methods. J Adhes Sci Technol. 2019;34(8):1–13. https:// doi. org/ 10. 1080/ 01694 243. 2019. 16907 75.
  • [46] Shaker C, Vernier M, Dressler H, Seebich P, Wunderle B, Rapid testing method for interface crack analysis of an adhesive bonded joint using an electrodynamic, (2017) 18th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems. 978–1–5090–4344–6/17/$31.00 ©2017 IEEE.
  • [47] Gultekini K, Akpinar S, Ozel A. the effect of the adherend width on the strength of adhesively bonded single-lap joint: experi-mental and numerical analysis. Compos B. 2014;60:736–45. https:// doi. org/ 10. 1016/j. compo sitesb. 2014. 01. 022.
  • [48] Sahoo PK, Dattaguru B, Manjunatha CM, Strength prediction of adhesively bonded joints using plastic zone size criterion. Procedia Engineering 173 (2017) 635–1641.https:// creat iveco mmons. org/ licen ses/ by- nc- nd/4. 0/.
  • [49] Han X, Akhmet G, Hu P, Wenbin H, Baubekov Y, Akhmetov M. Numerical prediction on the mechanical degradation of the adhesively bonded corrugated sandwich beam after hydrothermal aging. Compos Struct. 2020;241:112131. https:// doi. org/ 10. 1016/j. comps truct. 2020. 112131.
  • [50] DaSilva LFM, Das PJS, Adams NRD, Spelt JK. Analytical models of adhesively bonded joints-part: literature survey. Int J Adhes Adhes. 2009;29:319–30. https:// doi. org/ 10. 1016/j. ijadh adh. 2008. 06. 005.
  • [51] Panta YX, Zhang AN, Rider J, Wang PB. Gangadhara, Synergetic effects of carbon nanotubes and triblock copolymer on the lap shear strength of epoxy adhesive joints. Compos B. 2019;178:107457. https:// doi. org/ 10. 1016/j. compo sitesb. 2019. 107457.
  • [52] Mortensen F, Thomsen OT. Analysis of adhesively bonded joints: a unified approach. Compos Sci Technol. 2002;62:1011–31. https:// doi. org/ 10. 1016/ S0266- 3538(02) 00030-1.
  • [53] Volkerink O, Kosmann J, Schollerer MJ, Holzhuter D, Huhne C. Strength prediction of adhesively bonded single lap joints with the extended Finite Element Method. J Adhes. 2019. https:// doi. org/ 10. 1080/ 00218 464. 2018. 15531 20.
  • [54] Chua Y, Sun L, Zhan B, Yang X, Zhang C. Static and dynamic behavior of unbalanced bonded joints with adhesion defects in automotive structures. Compos Struct. 2019;226(1–15):111234. https:// doi. org/ 10. 1016/j. comps truct. 2019. 111234.
  • [55] He X, Wang Y. Stress distribution behavior in single-lap adhesively bonded beams. Strength Mater. 2014;46(6):820–30. https:// doi. org/ 10. 1007/ s11223- 014- 9616-9.
  • [56] Tsokanas P, Loutas T, Kotsinis G, Kostopoulos V, Van den Brink WM, De La Escalera FM. On the fracture toughness of metal-composite adhesive joints with bending-extension coupling and residual thermal stresses effect. Compos B. 2020;185(1–13):107694. https:// doi. org/ 10. 1016/j. compo sitesb. 2019. 107694.
  • [57] Tsokanas P, Loutas T, Pegkos D, Sotiriadis G, Kostopoulos V. Mode II fracture toughness of asymmetric metal-composite adhesive joints. MATEC Web Conf. 2019. https:// doi. org/ 10. 1051/ matec conf/ 20193 04010 04.
  • [58] Stein N, Weibgraeber P, Becker W. A model for brittle failure in adhesive lap joints of arbitrary joint configuration. Compos Struct. 2015;133:707–18. https:// doi. org/ 10. 1016/j. comps truct. 2015. 07. 100.
  • [59] Jojibabu P, Zhang YX, Rider AN, Wang J. Mechanical performance of adhesive joints using high-performance Nanocomposite adhesive material with carbon nanotube and triblock copolymer hybrids. Compos B. 2020;186(1–11): 107813. https:// doi. org/ 10. 1016/j. compo sitesb. 2020. 107813.
  • [60] Delzendehrooy F, Ayatollahi MR, Akhavan-Safar A, da Silva LFM. Strength improvement of adhesively bonded single lap joints with date palm fibers: effect of type, size, treatment method and density of fibers. Compos B. 2020;188(1–10): 107874. https:// doi. org/ 10. 1016/j. compo sitesb. 2020. 107874.
  • [61] Sadowski T, Golewski P, Zarzeka-Raczkowska E. Damage and failure processes of hybrid joints: adhesive bonded aluminum plates reinforced by rivets. Comput Mater Sci. 2011;50:1256–62. https:// doi. org/ 10. 1016/j. comma tsci. 2010. 06. 022.
  • [62] Sadowski T, Zarzka-Raczkowska E. Hybrid adhesive bonded and riveted joints-influence of rivet geometrical layout on strength of joints. Arch Metall Mater. 2012;57(4):1128–35. https:// doi. org/ 10. 2478/ v10172- 012- 0126-0.
  • [63] Chowdhury NM, Wang J, Chiu WK, Chang P. Experimental and finite element studies of thin bonded and hybrid carbon fiber double lap joints used in aircraft structures. Compos B. 2016;85:233–42. https:// doi. org/ 10. 1016/j. compo sitesb. 2015. 09. 038.
  • [64] Sadowski T, Knec M, Golewski P. Experimental investigations and numerical modeling of steel adhesive joints reinforced by rivets. Int J Adhes Adhes. 2010;30:338–46. https:// doi. org/ 10. 1016/j. ijadh adh. 2009. 11. 004.
  • [65] Marannano G, Zuccarello B. Numerical experimental analysis of hybrid double lap aluminum-CFRP joints. Compos Part B. 2015;71:28–39. https:// doi. org/ 10. 1016/j. compo sitesb. 2014. 11. 025.
  • [66] Bartczak B, Mucha J, Trzepiecinski T. Stress distribution in adhesively-bonded joints and the loading capacity of hybrid joints of car body steels for the automotive industry. Int J Adhes Adhes. 2013;45:42–52. https:// doi. org/ 10. 1016/j. ijadh adh. 2013. 03. 012.
  • [67] Sirea S, Mayorga LG, Plu B. Observation of failure scenarios in riveted assemblies: an innovative experimental strategy. Procedia Eng. 2015;114:430–6. https:// doi. org/ 10. 1016/j. proeng. 2015. 08. 089.
  • [68] Al-Samhan AM. Analysis of adhesively bonded riveted joints. J King Saud Univ Eng Sci. 2005;18(1):57–66. https:// doi. org/ 10. 1016/ S1018- 3639(18) 30821-3.
  • [69] Solmazi MY, Topkaya T. Progressive failure analysis in adhesively, riveted, and hybrid bonded double-lap joints. J Adhes. 2013;89:822–36. https:// doi. org/ 10. 1080/ 00218 464. 2013. 765800.
  • [70] Fiore V, Calabrese L, Proverbio E, Passari R, Valenz A. Salt spray fog aging of hybrid composite/metal rivet joints for automotive applications. Compos B. 2017;108:65–74. https:// doi. org/ 10. 1016/j. compo sitesb. 2016. 09. 096.
  • [71] AbdulKarim M, Jeong TE, Noh W, Park KY, Kam DH, Kim C, Nam DG, Jung H, Park YD. Joint quality of self-piercing riveting (SPR) and mechanical behavior under the frictional effect of various rivet coatings. J Manuf Process. 2020;58:466–77. https:// doi. org/ 10. 1016/j. jmapro. 2020. 08. 038.
  • [72] Chowdhury WK, Chiu J, Wang P. Chang, Static and fatigue testing thin riveted, bonded and hybrid carbon fiber double lap joints used in aircraft structures. Compos Struct. 2015;121:315–23. https:// doi. org/ 10. 1016/j. comps truct. 2014. 11. 004.
  • [73] Calabrese L, Proverbio E, Pollicino E, Galtieri G, Borsellino C. Effect of galvanic corrosion on the durability of aluminum/steel self-piercing rivet joints, Corrosion 10 Engineering. Sci Technol. 2015;50(1):10–7. https:// doi. org/ 10. 1179/ 17432 78214Y. 00000 00168.
  • [74] AbdulKarim M, Bae JH, Kam DH, Kim C, Choi WH, Park YD. Assessment of rivet coating corrosion effect on strength degradation of CFRP/aluminum self-piercing riveted joints. Surf Coat Technol. 2020;393:125726. https:// doi. org/ 10. 1016/j. surfc oat. 2020. 125726.
  • [75] Solmaz MY, Kocabs I, Gur M. Effect of riveting of the joint strength of adhesively bonded double lap joints. Anadolu Univ J Sci Technol A Appl Sci Eng. 2018;19(1):1–9. https:// doi. org/ 10. 18038/ aubtda. 330521.
  • [76] Mei H, Zhang D, Xia J, Cheng L. Effect of heat treatment on the riveted joints of two-dimensional C/Sic composites. Compos B. 2017;120:159–67. https:// doi. org/ 10. 1016/j. compo sitesb. 2017. 04. 002.
  • [77] Jiang H, Zeng C, Li G, Cui J. Effect of locking mode on mechanical properties and failure behavior of CFRP/Al electromagnetic riveted joint. Compos Struct. 2021;257:113162. https:// doi. org/ 10. 1016/j. comps truct. 2020. 113162.
  • [78] Jiang H, Cong Y, Zhang J, Wu X, Lia G, Cui J. Fatigue response of electromagnetic riveted joints with different rivet dies subjected to pull-out loading. Int J Fatigue. 2019;129:105238. https:// doi. org/ 10. 1016/j. ijfat igue. 2019. 105238.
  • [79] Jiang H, Sun L, Liang J, Li G, Cui J. the Shear failure behavior of CFRP/Al and steel/Al electromagnetic self-piercing riveted joints subject to high-speed loading. Compos Struct. 2019;230:111500. https:// doi. org/ 10. 1016/j. comps truct. 2019. 111500.
  • [80] Rudawska, Miturska I, Stancekova D, Mucha J. The strength of traditional and self-pierced riveted joints. MATEC Web Conf. 2018;244:01007. https:// doi. org/ 10. 1051/ matec conf/ 20182 44010 07.
  • [81] Mucha J, Witkowski W. Mechanical behavior and failure of riveting joints in tensile and shear tests. Strength Mater. 2015. https:// doi. org/ 10. 1007/ s11223- 015- 9712-5.
  • [82] ISO 12996, Mechanical Joining-Destructive testing of Joints-Specimen dimensions and test procedure for tensile shear testing of single joints. First edition 2013–07–15. https:// www. iso. org/ stand ard/ 52313. html.
  • [83] Torres-Arellano M, Bolom-Martínez MDJ, Franco-Urquiza EA, Pérez-Mora R, Jiménez-Arévalo OA, Olivier P. Bearing strength and failure mechanisms of riveted woven carbon composite joints. Aerospace. 2021;8(105):1–13. https:// doi. org/ 10. 3390/ aeros pace8 040105.
  • [84] da Silva LFM, Pirondi A, Ochsner A. Hybrid adhesive joints. Springer-VerlagBerlinHeidelberg (2011) shttps:// doi. org/ 10. 1007/ 978-3- 642- 16623-5.
  • [85] Yang Y, Gong M, Xia X, Tang Y. Damage failure analysis of Z-pins reinforced composite adhesively bonded single-lap joint. Comput Model Eng Sci (CMES). 2021;126(3):1239–49. https:// doi. org/ 10. 32604/ cmes. 2021. 014129.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f1d658c-f5c2-4b6f-86f4-3b63e29e4ca5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.