PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation and Modelling of Stress Relaxation on Cylindrical Shell Woven Fabrics: Effect of Experimental Speed

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badanie wpływu prędkości na relaksacje naprężeń w cylindrycznych układach tkanych
Języki publikacji
EN
Abstrakty
EN
This paper evaluates the effects of experimental speeds (22, 24 and 26 m/min) on woven fabrics' stress relaxation behaviour in a cylindrical form under constant torsional strain. Worsted woven fabrics were put under experimentation with identical specifications along the warp direction such as yarn density, fabric construction and fibre content, However the structural parameters were somewhat different in the weft direction. The experiments were conducted using the method established by Hezavehei, et.al (2011) and the stress relaxation behaviour of specimens at three speeds of a spiral shaft which can hold samples tightly in a cylindrical form and automatically rotate were investigated. According to the results obtained, with increasing the speed of fabric rotation around the main shaft, the quantity of stress relaxation percent decreases. The effect of experimental speed on the stress relaxation behaviour is differently reported for the warp and weft directions due to the variety of structures along each individual direction. Regarding this, the reduction in the torsional strain recovery of samples in the weft direction is significantly more than that in the warp direction. In fact, the stress relaxation behaviour is likely to be related to the physical and viscoelastic properties of fibre, yarn and fabric. Hence the experimental data were fitted with two well known viscoelastic models such as an ordinary Maxwell's and three component Maxwell's model with a parallel connected nonlinear spring. The results were fairly justified by curve fitting of experimental data with the three component Maxwell's model including a parallel connected nonlinear spring. Furthermore non-linear behaviour was observed from experimental validation with a remarkable correlation coefficient.
PL
Badano tkaniny z przędz czesankowych przy jednakowych warunkach struktury wzdłuż kierunku osnowy, jak gęstość tkaniny, struktura tkaniny i zawartość różnych włókien w przędzy, natomiast parametry wzdłuż wątku wykazywały zróżnicowanie. Badania prowadzono zgodnie z metodą opracowaną przez Hezavehei (2011). Wyniki badań wykazały, że przy wzroście prędkości relaksacji wartość relaksacji zmalała. Wykazano, że istnieje zróżnicowanie relaksacji naprężeń torsyjnych w kierunkach osnowy i wątku. Zachowanie się tkanin przy relaksacji naprężeń jest ściśle związane z lepko-sprężystymi właściwościami badanego materiału. Wyniki badań interpretowano za pomocą dwóch modeli: zwykłego modelu Maxwella i trójskładnikowego modelu Maxwella z równolegle połączonymi elementami sprężystymi. Uzyskano dużą zgodność wyników z trójskładnikowym modelem Maxwella.
Rocznik
Strony
64--73
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Department of Textile Engineering, Arak Branch, Islamic Azad University, Arak, Iran
autor
  • Department of Textile Engineering, Arak Branch, Islamic Azad University, Arak, Iran
  • Department of Textile Engineering, Arak Branch, Islamic Azad University, Arak, Iran
Bibliografia
  • 1. Morton WE, Hearle WS. Physical Properties of Textile Fibres. The Textile Institute, Manchester, 1993.
  • 2. Rupp J, Bohringher A. Elastanhaltige garne und stoffe. International Textile Bulletin 1999; 35, 1: 10-30.
  • 3. Bukosek V. Racunalnisko vrednotenje viskoelasticnih lastnosti vlaken. Tekstilec 1983; 26, 12: 24-9.
  • 4. Milasius V. The problem of modeling relaxation phenomena. IUVZ:Tekhnologya Tekstilnoy Promyshlennosti 1973; 5: 25-27.
  • 5. Milasius V. The investigation of relaxation and reverse relaxation of chemical yarns and fabrics reinforcement taking into consideration the nonlinearity of their behaviour. IUVZ:Tekhnologya Tekstilnoy Promyshlennosti 1974; 4: 19-21.
  • 6. Vitkauskas A. Regular discrete relaxation time spectrum of textiles. Material Science 1996; 2, 3: 65-71.
  • 7. Vitkauskas A. Influence of alternating rate of extension on stress relaxation in textile yarns. Material Science 1997; 1, 4: 52-57.
  • 8. Nitta K, Susuki K. Prediction of stress relaxation behavior in high density polyethylene solids. Macromolecular Theory Simulation 1999; 8, 3: 254-59.
  • 9. Kothari VK, Rajkhowa R, Gupta VB. Stress relaxation and inverse stress relaxation in silk fibres. Journal of Applied Polymer Science 2001; 82, 5: 1147-52.
  • 10. Saha N, Banerjee AN. Stress-relaxation behavior of unidirectional polyethylene– carbon fibers: PMMA hybrid composite laminates. Journal of Applied Polymer Science 1998; 67, 1: 1925-29.
  • 11. Ward IM, Hadley DW. An Introduction to the Mechanical Properties of Solid Polymer. Wiley, Chichester, 1993.
  • 12. Barnes HA, Hutton JF, Walters K. An Introduction to the Rheolog. Department of Mathematics, University College of Wales, Aberystwyth, 1989.
  • 13. Liu H, Tao XM, Choi KF, Xu BG. Analysis of the relaxation modulus of spun yarns. Textile Research Journal 2010; 80, 5: 403-10.
  • 14. Gersak J, Sajn D, Bukosek V. A study of the relaxation phenomena in the fabrics containing elastane yarns. International Journal of Clothing Science and Technology 2005; 17, ¾: 188-99.
  • 15. Matsuo M, Yamada T, Ito N. Stress relaxation behavior of knitted fabrics under uniaxial and strip biaxial excitation as estimated by corresponding principle between elastic and visco-elastic bodies. Textile Research Journal 2006; 76, 6: 465-77.
  • 16. Sajjn D, Gersak J, Flajs R. Prediction of stress relaxation of fabrics with increased elasticity. Textile Research Journal 2006; 76, 10: 742-50.
  • 17. Pavlinic D, Gersak J. Investigations of the relation between fabric mechanical properties and behaviour. International Journal of Clothing Science and Technology 2003; 15, 3/4: 231-40.
  • 18. Chapman, B. M. A model for the crease recovery of fabrics. Textile Research Journal 1974; 44, 7: 531-38.
  • 19. Barid K. Relaxation shrinkage of worsted yarns. part I: some causes and some consequences. Textile Research Journal 1975; 45, 6: 442-52.
  • 20. Asvadi S, Postle R. An analysis of fabric large strain shear behavior using linear viscoelasticity theory. Textile Research Journal 1994; 64, 4: 208-14.
  • 21. Milasius R, Milasiene D, Jankauskaite V. Investigation of Stress Relaxation of Breathable-Coated fabric for Clothing and Footwear. Fibres & Textiles in Eastern Europe 2003;11, 2: 53-55.
  • 22. Hezavehi E, Shaikhzadeh Najar S, Zolgharnein P, Yahya H. A new electromechanical technique for measurement of stress relaxation of polyester blended fabric with constant torsional strain. International Journal of Clothing Science and Technology 2011; 23, N4, 5: 388-98.
  • 23. Shaikhzadeh Najar S, Hezavehi E, Hoseini Hashemi Sh, Rashidi A. Investigition into wrinkle behavior of woven fabrics in a cylindrical form by measuring their tangential force. International Journal of Clothing Science and Technology 2009; 21, 1: 7-30.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f1c3703-2bf3-47ac-8010-b1665faf34ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.