PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Production of (R)-styrene oxide by recombinant whole-cell biocatalyst in aqueous and biphasic system

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The enantioselective resolution of racemic styrene oxide (rac-SO) to (R)-SO by whole cells of a recombinant Escherichia coli expressing epoxide hydrolase (EH) activity in aqueous and biphasic system were studied. Some parameters that may alter this bio-resolution, such as the concentration of recombinant cell, substrate and product were evaluated. The effect of the addition of different additives on the course of rac-SO biotransformation was also investigated. The results showed that the yield and the enantiomeric excess (ee) of (R)-SO were dependent on these variables. When the kinetic resolution was conducted with 350 mM of rac-SO, enantiopure (R)-SO with high (≥99%) ee was obtained with a yield of 38.2% yield at 12.2 h in the presence of 10% (v/v) Tween 80. An isooctane/aqueous system was developed to overcome the adverse factors in the aqueous phase, resulting in an improvement of yield from 38.2% to 42.9%. The results will provide a useful guidance for further application of this enzyme in the biocatalytic production of chiral synthons.
Rocznik
Strony
54--60
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
  • School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
autor
  • School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
Bibliografia
  • 1. Hwang, S.H., Choi, C.Y. & Lee, E.Y. (2010). Bio- and chemo-catalytic preparations of chiral epoxides. J. Ind. Eng. Chem. 16, 1–6. DOI: 10.1016/j.jiec.2010.01.001.
  • 2. Choi, W.J. (2009). Biotechnological production of enantiopure epoxides by enzymatic kinetic resolution. Appl. Microbiol. Biot. 84, 239–247. DOI: 10.1007/s00253-009-2110-9.
  • 3. Kamble, M.P. & Yadav, G.D. (2017). Biocatalytic resolution of (R,S)-styrene oxide using a novel epoxide hydrolase from red mung beans. Catal. Today DOI: 10.1016/j.cattod.2017.06.013.
  • 4. Saini, P., Kumar, N., Wani, S.I., Sharma, S., Chimni, S.S. & Sareen, D. (2017). Bioresolution of racemic phenyl glycidyl ether by a putative recombinant epoxide hydrolase from Streptomyces griseus NBRC 13350. World J. Microb. Biot. 33, 82. DOI: 10.1007/s11274-017-2248-z.
  • 5. Hu, D., Wang, R., Shi, X.L., Ye, H.H., Wu, Q., Wu, M.C. & Chu, J.J. (2016). Kinetic resolution of racemic styrene oxide at a high concentration by recombinant Aspergillus usamii epoxide hydrolase in an n-hexanol/buffer biphasic system. J. Biotech. 236, 152–58. DOI: 10.1016/j.jbiotec.2016.08.013.
  • 6. Chen, W.J., Lou, W.Y., Yu, C.Y., Wu, H., Zong M.H. & Smith, T.J. (2012). Use of hydrophilic ionic liquids in a two-phase system to improve Mung bean epoxide hydrolase-mediated asymmetric hydrolysis of styrene oxide. J. Biotech. 162, 183–90. DOI: 10.1016/j.jbiotec.2012.09.006.
  • 7. Pu, W., Cui, C., Guo, C. & Wu, Z.L. (2018). Characterization of two styrene monooxygenases from marine microbes. Enzyme Microb. Tech. 112, 29–34. DOI: 10.1016/j.enzmictec.2018.02.001.
  • 8. Wu, S.K., Li, A.T., Chin, Y.S. & Li, Z. (2013). Enantioselctive hydrolysis of racemic and meso-epoxides with recombinant Escherichia coli expressing epoxide hydrolase from Sphinggomonas sp. HXN-200: Preparation of epoxides and vicinal diols in high ee and high concentration. Acs Catal. 3, 752–759. DOI: 10.1021/cs300804v.
  • 9. Panke, S., Wubbolts, M.G., Schmid, A. & Witholt, B. (2000). Production of enantiopure styrene oxide by recombinant Escherichia coli synthesizing a two-component styrene monooxygenase. Biotechnol. Bioeng. 69, 91–100. DOI: 10.1002/(SICI)1097-0290(20000705)69:1<91::AID-BIT11>3.0.CO;2-X.
  • 10. Tischler, D., Groning, J.A.D., Kaschabek, S.R. & Schlomann, M. (2012). One-component styrene monooxygenases: an evolutionary view on a rare class of flavoproteins. Appl. Biochem. Biotechnol. 167, 931–44. DOI: 10.1007/s12010-012-9659-y.
  • 11. Zhu, Q.Q., He, W.H., Kong, X.D., Fan, L.Q., Zhao, J., Li, S.X. & Xu, J. H. (2014). Heterologous over-expression of Vigna radiate epoxide hydrolase in Escherichia coli and its catalytic performance in enantioconvergent hydrolysis of p-nitrostyrene oxide into (R)-p-nitrophenyl glycol. Appl. Microbiol. Biot. 98, 207–218. DOI: 10.1007/s00253-013-4845-6.
  • 12. Hopmann, K.H., Hallberg, B.M. & Himo, F. (2005). Catalytic Mechanism of Limonene epoxide hydrolase, a theoretical study. J. Am. Chem. Soc. 127, 14339–14347. DOI: 10.1021/ja050940p.
  • 13. Zocher, F., Enzelberger, M.M., Bornscheuer, U.T., Hauer, B. & Schmid, R.D. (1999). A colorimetric assay suitable for screening epoxide hydrolase activity. Anal. Chim. Acta. 391, 345–351. DOI: 10.1016/S0003-2670(99) 00216-0.
  • 14. Ye, H.H., Hu, D., Shi, X. L., Wu, M.C., Deng, C. & Li, J. F. (2016). Directed modification of a novel epoxide hydrolase from Phaseolus vulgaris, to improve its enantioconvergence towards styrene epoxides. Catal. Commun. 87, 32–35. DOI: 10.1016/j.catcom.2016.08.036.
  • 15. Kong, X.D., Ma, Q., Zhou, J.H., Zeng, B.B. & Xu, J.H. (2014). A smart library of epoxide hydrolase variants and the top hits for synthesis of (S)-beta-blocker precursors. Angew Chem. Int. Edit. 53, 6641–6644. DOI: 10.1002/anie.201402653.
  • 16. Saini, P., & Sareen, D. (2017). An overview on the enhancement of enantioselectivity and stability of microbial epoxide hydrolases. Mol. Biotech. 59, 1–19. DOI: 10.1007/s12033-017-9996-8.
  • 17. Woo, J.H., Kang, J.H., Kang, S., Hwang, Y.O. & Kim, S.J. (2009). Cloning and characterization of an epoxide hydrolase from Novosphingobium aromaticivorans. Appl. Microbiol. Biot. 82, 873–81. DOI: 10.1007/s00253-008-1791-9
  • 18. Reetz, M.T., Bocola, M., Wang, L.W., Sanchis, J., Cronin, A., Arand, M., Zou, J., Archelas, A., Bottalla, A.L. Naworyta, A. & Mowbray, S.L. (2009). Directed evolution of an enantioselective epoxide hydrolase: Uncovering the source of enantioselectivity at each evolutionary stage. J. Am. Chem. Soc. 131, 7334–43. DOI: 10.1021/ja809673d.
  • 19. Lee, E.Y., Yoo, S.S., Kim, H.S., Lee, S.J., Oh, Y.K. & Park, S. (2004). Production of (S)-styrene oxide by recombinant Pichia pastori containing epoxide hydrolase from Rhodotorula glutinis. Enzyme Microb. Tech. 35, 624–31. DOI: 10.1016/j.enzmictec.2004.08.016.
  • 20. Yildirim, D., Tükel, S.S., Alagoz, D. & Alptekin, O. (2011). Preparative-scale kinetic resolution of racemic styrene oxide by immobilized epoxide hydrolase. Enzyme Microb. Tech. 49, 555–559. DOI: 10.1016/j.enzmictec.2011.08.003
  • 21. Woo, M.H., Kim, H.S. & Lee, E.Y. (2012). Development and characterization of recombinant whole cells expressing the soluble epoxide hydrolase of Danio rerio and its variant for enantioselective resolution of racemic styrene oxides. J. Ind. Eng. Chem. 18, 384–91. DOI: 10.1016/j.jiec.2011.11.110.
  • 22. Zhao, J., Chu, Y.Y., Li, A.T., Ju, X., Kong, X.D. & Pan, J. (2011). An unusual (R)-selective epoxide hydrolase with high activity for facile preparation of enantiopure glycidyl ethers. Adv. Synth. Catal. 353, 1510–18. DOI: 10.1002/adsc.201100031.
  • 23. Pedragosa-Moreau, S., Morisseau, C., Zylber, J., Archelas, A., Baratti, J. & Furstoss, R. (1997). Microbial transformations. 33. Fungal epoxide hydrolases applied to the synthesis of enantiopure para-substituted styrene oxides, a mechanistic approach. J. Org. Chem. 61, 7402–07. DOI: 10.1002/chin.199710036.
  • 24. Xue, F., Liu, Z.Q., Zou, S.P., Wan, N.W., Zhu, W.Y. & Zheng, Y.G. (2014). A novel enantioselective epoxide hydrolase from Agromyces mediolanus ZJB120203: Cloning, characterization and application. Process Biochem. 49, 409–417. DOI: 10.1016/j.procbio.2014.01.003.
  • 25. Baldascini, H., Ganzeveld, K.J. & Janssen, D.B. (2001). Effect of mass transfer limitations on the enzymatic kinetic resolution of epoxides in a two-liquid-phase system. Biotechnol. Bioeng. 73, 44–54. DOI: 10.1002/1097-0290(20010405)73:13.0.CO.
  • 26. Hwang, S., Hyun, H., Lee, B., Park, Y., Lee, E.Y. & Choi, C. (2006). Purifi cation and characterization of a recombinant Caulobacter crescentus epoxide hydrolase. Biotechnol. Bioproc. E. 11, 282–287. DOI: 10.1007/BF03026241.
  • 27. Llanes, A. (1999). Stability of biocatalyst. Electron J. Biotech. 11, 220. DOI: 10.2225/vol2-issue1-fulltext-2.
  • 28. Sindy, E. & Claudia, B. (2013). Kinetic study of the colloidal and enzymatic stability of beta-galactosidase, for designing its encapsulation route through sol-gel route assisted by Triton X-100 surfactant. Biochem. Eng. J. 75, 32–38. DOI: 10.1016/j.bej.2013.03.010.
  • 29. Rubingh, D.N. (1996).The infl uence of surfactants on enzyme activity. Curr. Opin. Colloid In. 1, 598–603. DOI: 10.1016/S1359-0294(96)80097-5.
  • 30. Gong, P.F., Xu, J.H., Tang, Y.F. & Wu, H.Y. (2003). Improved catalytic performance of Bacillus megaterium epoxide hydrolase in a medium containing Tween-80. Biotechnol. Progr. 19, 652–654. DOI: 10.1021/bp020293v.
  • 31. Kim, S.W., Seo, W.T. & Park, Y.H. (1997). Enhanced synthesis of trisporic acid and β-carotene production in Blakeslea trispora by addition of a non-ionic surfactant, Span 20. J. Biosci. Bioeng. 84, 330–332. DOI: 10.1016/S0922-338X(97)89253-7.
  • 32. Laane, C., Boeren, S., Vos, K. & Veeger, C. (2009). Rules for optimization of biocatalysis in organic solvents. Biotechnol. Bioeng. 102, 2–8. DOI: 10.1002/bit.260300112.
  • 33. Lee, E.Y. (2007). Enantioselective hydrolysis of epichlorohydrin in organic solvents using recombinant epoxide hydrolase. J. Ind. Eng. Chem. 13, 159–62.
  • 34. Choi, W.J., Lee, E.Y., Yoon, S.J., Yang, S.T. & Choi, C.Y. (1999). Biocatalytic production of chiral epichlorohydrin in organic solvents. J. Biosci. Bioeng. 88, 339–41. DOI: 10.1016/S1389-1723(00)80022-5.
  • 35. Liu, Z.Y., Michel, J., Wang, Z.S., Witholt, B. & Li, Z. (2006). Enantioselective hydrolysis of styrene oxide with the epoxide hydrolase of Sphingomonas sp. HXN-200. Tetrahedron-Asymmetr. 17, 47–52. DOI: 10.1016/j.tetasy.2005.11.018.
  • 36. Lee, E.Y., Yoo, S.S., Kim, H.S., Lee, S.J., Oh, Y.K. & Park, S. (2004). Production of (S)-styrene oxide by recombinant Pichia pastori containing epoxide hydrolase from Rhodotorula glutinis. Enzyme Microb. Tech. 35, 624–31. DOI: 10.1016/j.enzmictec.2004.08.016.
  • 37. Lee, S.J., Kim, H.S., Kim, S.J., Park, S., Kim, B.J. & Shuler, M.L. (2007). Cloning, expression and enantioselective hydrolytic catalysis of a microsomal epoxide hydrolase from a marine fish, Mugil cephalus. Biotechnol. Lett. 29, 237–246. DOI: 10.1007/s10529-006-9222-4.
  • 38. Yildirim, D., Tükel, S.S., Alagoz, D. & Alptekin, O. (2011). Preparative-scale kinetic resolution of racemic styrene oxide by immobilized epoxide hydrolase. Enzyme Microb. Tech. 49, 555–559. DOI: 10.1016/j.enzmictec.2011.08.003.
  • 39. Kim, H.S., Lee, S.J., Lee, E.J., Hwang, J.W., Park, S., Kim, S.J. & Lee, E.Y. (2005). Cloning and characterization of a fish microsomal epoxide hydrolase of Danio rerio and application to kinetic resolution of racemic styrene oxide. J. Mol. Catal. B-Enzym. 37, 30–35. DOI: 10.1016/j.molcatb.2005.09.003 .
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f1bf973-daa4-402c-8499-b23bcde4ace7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.