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ABSTRACT

The derivation of the next nonlinear term of the KZK equation is done within original perturbation
seheme on the base of the virial expansion for thermie equation of state. We also derived equations for
seeond and third harmonie eomponents in the nearfield of the sound wave generated by a piston
transdueer. Calculation seheme for a numerieal estimation of the integrals for the fundamental and
second harmonics is proposed as well as for the averaged third harmonie eomponent. Some results of
performed calculations are given for the iIIustration of the method possibility and comparison with direet
finite difference solutions of the KZK equation.

SYMBOLS

a radius ofthe circular piston source;
b dissipation coefficient of the medium;
Co velocity of acoustic wave at infinitesimal

amplitude;
k wave number, k=OJ/co;
p acoustie pressure;
po amplitude of aeoustic pressure on the source;
p . acoustic pressure normalized to Po , P . = pipo;
IPn I amplitude of n-th harmonie eoinponent of

acoustie pressure;
I p'; I dimensionless (normalized to Po) amplitude of

n-th harmonie eomponent of aeoustie pressure;
p n complex amplitude of n-th harmonie

component of aeoustie pressure;
r radial variable;
ro Rayleigh distance, r» = ka2/2;
z axial variable ;
al linear absorption coefficient, al = bol/2Poco3 ;
e parameter ofnonlinearity, e= I+BI2A;
Po equiIibrium density of the medium;
a dimensionless coordinate along acoustic axis,

a= z/n, ;
, dimensionless coordinate across acoustic axis,

Ę= rla;
t" retarded time t=t-z/c-;
aJ angular frequency.

INTRODUCTION

At the paper [I] it was announeed that authors
derived the additional term to KZK equation. The
term is reproduced without derivation details and it is
explained that it is originated from the cubic part of
the equation of state [2]:

P_PO=A(p-PO)+~(p-Po)2 +~(p_PO)3 +... (1)
Po 2Po 6po

Here we propose the possible way to estimate the
constant C of the equation (1) analyzing the
measurements of the third harmonies of aeoustic
nearfield produeed by classical cireular piston
osciIIations. The theory we develop incIudes the
derivation of the KZK equation analogue within the
next order of accuracy in nonlinear and diffraction
parameter [2J. We save and show alI the terms that
appear in the derivation proeedure that suppose
equality of the amplitude and configuration
parameter. Afterwards we use the temporai Fourier
eomponents of the nearfield with slow variable
coefficients and introduce nonlinear resonant terms
equations in the traditional sense. The study of
analytical fermulas is performed on the base of results
of [3] that give minima! number of integrations
taking into aecount the cylindrical symmetry. The
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ealeulations of integrals for first and seeond
hannonics amplitudes is made numerically using
the special procedures to simplify fonnulas in the
case of rapidly oscillating integrands [4]. The
results are partially reprodueed below.

The third hannonics is the main target of our
efforts. It is investigated in the framework of the
averaging procedure, that is also done in [4] but for
the equation of state without a eubie term. The
technique allows to take into aeeount the new term
of KZK. Namely, this allows us to compare the
contributions of the given harmonie eomponents,
tbat eorrespond to different aeeuracy in the equation
ofstate.

THEORETICAL MODEL

For a denvatlon of the KZK analogue with
nonlinear tenns in the next order of the perturbation
theory we follow the pioneering work [5) with the
same smalI parameter /-l. • We also ehange the basie
equation of state that couple the pressure p and
mass density p to the third-order expansion (1). The
resuIting equation has the form:

where 0= b12co3Po, e' = &l2coPoare the dissipation
and nonlinear faetors. There are same extra terms
in the equation (2) ofthe seeond (in p) order but we
omit them because such terms are smaIl in a high
frequency range.

The solution of the equation (2) we shall expand
in Fourier series introdueing for eonvenience the
amplitude parameter ł..:

00

p=LP(n) .A n+l

n=O

(3)

Here ln) = A (n)(r, z) ·exp[ian(n +1)] +C.C.

The substitution of (3) in (2) gives after
transfonnations:

rr-O

-alD l+m{ (I +m+2)2 [Al) -Am) .,j-<1+m+2) +c.c.] +

+(l-~2{A'(1) .Ani) ·dra(I-ni) +c.c.} }.
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The lowest nonlinear resonant terms are indicated in
the table:

l m l+m+2 l-m / m l+m.+2 l-m.

O O 2 O 1 l 4 O

l O 3 l 2 O 4 O

O l 3 -1 O 2 4 -2

Equalizing the resonance tenns we go to
amplitudes of harmonies. For example the third
hannonics may be simpliefied if one introduees new
amplitudes as:

P<2) = r exp(-90ll)2z).

p(l) = P exp] -40 ll)2Z) ,

pro) = a exp( -o ll)2 z).
The equation for y takes the form:

(4)

(2)

Below we restrict ourseIves only to the standard
KZK terms for the illustrations of the possibiIities of
the method and a comparison with the numerical
results and measurements [7]. Integrating by z and
over the infinite diameter receiver with normalization
by 1ta2 gives:

l <Xl

\r)= 7ra2 f27rrr dr=
o

-12ll) fi' : , eo

= 2 feH01zfaprdrdz.
a o o

(5)

If we substitute the expressions for a and f3 from
(3) in the equation (5) and integrate it we go to the
formula for averaged third pressure harmonies at
distance Z. The resułting formuła for the distances
z s: 1/4 (where exp(40ll)2z) == l +40ll)2Z) may be
expressed as linear combination of &,2 and 0&,2 with
diffraction eoefficients that depend onły on Z. It alłows
us to simplify calculations of nonlinear and absorption
parameters by fitting of measurements to theoreticał
curves.



CALCULATION OF INTEGRALS AND
COMP ARISON OF RESUL TS WITH
NUMERICAL SOLUTlON OF KZK EQUATION

The fundamental hannonie eomponent is
expressed as integral of Bessel funetions and
exponent eombination [3]. Introducing
dimensionless eoordinates S = rla and o = z/ro we
obtain:

where J; are nth order Bessel funetions. The
folIowing integral sum was applied for numerieal
ea1culations to aceount oseillations of the integrand
with the biggest seale of JI :

1

o
O

1.5 O

l J;(1)Jo(A;)~i ~ 0-)d1=:

l _J'X )=: fJI(1)Jo(A;)~1 40- dA+

L 1+(/+1)6 __ ( X )
+~ J:I(1) Jo(~~l 4 o- dA=:

=: f. ..+
o
L

+ L{Jo(1+/tl) -Jo[ 1+(1+ l)tl]}Jo{[l + {l+O.5)tlJq} x
1=0

x ~i[ 1+ (/ +405),oJ'CTJ
Results of ea1culations of the fundamental hanno nie

component for a eircular uniform source in the lossless
medium are shown at figurel.

1

Fig.l. Nearfield pressure amplitudes of the fundamental harmonie eomponent for a eircular uniform source in
the lossless medium, computed from the solutton of the linearized KZK equation.
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The second harmonie component is expressed by double integral [3]:

~((1",Ę) =

where the integrand is essentially singular. The
calculation of it is perfonned by more generał formula
from [6], and division of network integration in parts

distinguishing the vicinity of singularity point.
Finally:

e (ka)2 p-I
D ()::) e-al rocr ""'F2Up'':1" =---2 .L..

Po Co k=O

if Idgl p.n.k Lluk I :s; 0.1,
(6)

where:

__ 2iĘ,_: +al roak {feg2 p.nk ] LlĘ,
feg; = e ap-ak ""' [Ll.l=] 2

p.n.k: .L.. feg2 sinh 2dg2 __
I p,n.k,1 2 p.k,1 d 2 '

g p.k.1

if Idg2 p.k ] ' LlĘ I :s; 0.1,

if Idg2 p.k.1 ' LlĘ I> 0.1.

d I .= _ 2iĘ;
g p.n;« ( )2

Up-Uk

4i~dg2 = __ ......:c:-_
p.kI U - U

n k

The results of calculations are presented below in the form of 3D distribution:

0.4

IP/(CT,~I 0.2

O
O

1.5 O

Fig.2. Nearfield pressure amplitudes of the second harmonie component for a circular uniform
source (ka ~ 100 and Po= 100 kPa) in the distilled water at T = 20 "C, computed using formula (6).

86



The comparison of calculations using the equation
(6) at ';:=0 with the results of numerical integration of
the KZK equation is shown at figure 3. As it is seen
the explicit analytical solution of the linearized KZK
equation for higher source level (Po = 100 kPa) and at
larger ranges is inconsistent with numerical results

obtained using a paraboli c approximation. This can
be explained by negleeting within a quasilinear
approaeh the extra nonlinear tapering of the
amplitude in the vieinity of the beam axis (to transfer
energy into higher harmonies).

O.6~ ~ ~ ~ ~ --.
1P2'(o;O)1

Fig.3. The dependence of the second harmonies amplitudes of the on-axis sound pressure vs. distanee for
ka ::; 100 and po = 50/100 kPa in the distilled water at T = 20 "C (absorption is neglected). Circles show
the results of computation according to eq. (6), solid lines are numerical solutions ofKZK equation [7].

At Jeast the averaged third hannonie eomponent is esteemed by the simple direet integration formulae:

The integration (7) is illustrated by figure 3,

0.12.---------,---------.----------.---------.---------.
Po=lOO kPa

0.8 1

O'

Fig.3. The dependenee of the third harmonie component amplitude ofthe average sound pressure vs. distance
between transducers for ka ::; 100 and Po = 50/100 kPa in the distilled water at T = 20 "C (absorption is
neglected). Circles show the results of computation aeeording to eq. (7). solid lines are from averaged
numerical solutions ofKZK equation [7].
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CONCLUSION

The approach we develop is oriented for standard
packages finnware PC level. It tends to use
combinations of asymptotics and speciał integral
sums to cover difficult parts of integration area. The
main profit of resonance hannonics method, we
consider here as theoretical fonnulation, is a
possibility of expressing an acoustic nearfield by
quadrature components. There is also obvious
possible to apply the parabolic approximation and
include higher non1inear constants as for example
via state equations. The forthcoming results we see
in foundation of measurement methods of new
parameters (nonlinearity factors, absorption
coefficients) that are involved in the considered
scheme.
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