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ABSTRACT

The derivation of the next nonlinear term of the KZK equation is done within original perturbation
scheme on the base of the virial expansion for thermic equation of state. We also derived equations for
second and third harmonic compenents.in the nearfield of the sound wave generated by a piston
transducer. Calculation scheme for a numerical estimation of the integrals for the fundamental and
second harmonics is proposed as well as for the averaged third harmonic component. Some results of
performed calculations are given for the illustration of the method possibility and comparison with direct

finite difference solutions of the KZK equation.

SYMBOLS

a radius of the circular piston source;

b dissipation coefficient of the medium;

co  velocity of acoustic wave at infinitesimal
amplitude;

k wave number, k=w /¢y ;

P acoustic pressure;

po  amplitude of acoustic pressure on the source;

p’  acoustic pressure normalized to py, p’ = p/po;

| po) amplitude of n-th harmonic component of
acoustic pressure;

| p’»| dimensionless (normalized to p, ) amplitude of
n-th harmonic component of acoustic pressure;

P,  complex amplitude of n-th harmonic
component of acoustic pressure;

r radial variable;

ro  Rayleigh distance, r, = ka*/2;

z axial variable ;

a, linear absorption coefficient, & = ba’2pocy’ ;

£ parameter of nonlinearity, £ = 1+5/24,

po  equilibrium density of the medium;

o  dimensionless coordinate along acoustic axis,
o=z

& dimensionless coordinate across acoustic axis,
E=rla;

T retarded time =t-2/co;

@  angular frequency.

INTRODUCTION

At the paper [1] it was announced that authors
derived the additional term to KZK equation. The
term is reproduced without derivation details and it is
explained that it is originated from the cubic part of
the equation of state [2]:
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Here we propose the possible way to estimate the
constant C of the equation (1) analyzing the
measurements of the third harmonics of acoustic
nearfield produced by classical circular piston
oscillations. The theory we develop includes the
derivation of the KZK equation analogue within the
next order of accuracy in nonlinear and diffraction
parameter [2]. We save and show all the terms that
appear in the derivation procedure that suppose
equality of the amplitude and configuration
parameter. Afterwards we use the temporal Fourier
components of the nearfield with slow variable
coefficients and introduce nonlinear resonant terms
equations in the traditional sense. The study of
analytical formulas is performed on the base of results
of [3] that give minimal number of integrations
taking into account the cylindrical symmetry. The
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calculations of integrals for first and second
harmonics amplitudes is made numerically using
the special procedures to simplify formulas in the
case of rapidly oscillating integrands [4]. The
results are partially reproduced below.

The third harmonics is the main target of our
efforts. It is investigated in the framework of the
averaging procedure, that is also done in [4] but for
the equation of state without a cubic term. The
technique allows to take into account the new term
of KZK. Namely, this allows us to compare the
contributions of the given harmonic components,
that correspond to different accuracy in the equation
of state.

THEORETICAL MODEL

For a derivation of the KZK analogue with
nonlinear terms in the next order of the perturbation
theory we follow the pioneering work [5] with the
same small parameter p. . We also change the basic
equation of state that couple the pressure p and
mass density p to the third-order expansion (1). The

resulting equation has the form:
G
Pu= Bp=0 =8 [F] + @
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where 8= b2co’py, & = &l2copy are the dissipation
and nonlinear factors. There are some extra terms
in the equation (2) of the second (in p) order but we
omit them because such terms are small in a high
frequency range.

The solution of the equation (2) we shall expand
in Fourier series introducing for convenience the
amplitude parameter A:

p=2p" 1™ ®
n=0

Here p(") =A%, z) -explior(n +1)] +c.c.

The substitution of (3) in (2) gives after
transformations:
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The lowest nonlinear resonant terms are indicated in
the table:

Flm | +m+2 [l-m | |m |l+m.+2 | I-m.
010 2 0 |1 ¢}1 4 0
110 3. 1 12 [0 4 0
0|1 3 -1 (o |2 4 =3

Equalizing the resonance terms we go to
amplitudes of harmonics. For example the third
harmonics may be simpliefied if one introduces new
amplitudes as:

P =y exp(—-%cuzz).
p=p exp(—45a)lz), @)
PP =a exp(——é'wzz).

The equation for y takes the form:

blwy, =y —

—[365’@2&[3— 3'g —C:q’zc;ﬂ y’]cxp(éiéwzz).

Below we restrict ourselves only to the standard
KZK terms for the illustrations of the possibilities of
the method and a comparison with the numerical
results and measurements [7]. Integrating by z and
over the infinite diameter receiver with normalization

by ma? gives:
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If we substitute the expressions for ¢ and £ from
[3] in the equation (5) and integrate it we go to the
formula for averaged third pressure harmonics at
distance z. The resulting formula for the distances
z< 1/4 (where exp(ddw’z) =1+4dw’z) may be
expressed as linear combination of &7 and 822 with
diffraction coefficients that depend only on z. It allows
us to simplify calculations of nonlinear and absorption
parameters by fitting of measurements to theoretical
curves,
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Resuits of calculations of the fundamental harmonic

component for a circular uniform source in the lossless

medium are shown at figurel.
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Fig.1. Nearfield pressure amplitudes of the fundamental harmonic component for a circular uniform source in
the lossless medium, computed from the solution of the linearized KZK equation.



The second harmonic component is expressed by double integral [3]:

o)

distinguishing the vicinity of singularity point.

Finally:
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where the integrand is essentially singular. The
calculation of it is performed by more general formula
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from [6], and division of network integration in parts
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The results of calculations are presented below in the form of 3D distribution:
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Fig.2. Nearfield pressure amplitudes of the second harmonic component for a circular uniform

100 kPa) in the distilled water at T = 20 °C, computed using formula (6).

source (ka =~ 100 and pq,
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The comparison of calculations using the equation
(6) at &=0 with the results of numerical integration of
the KZK equation is shown at figure 3. As it is seen
the explicit analytical solution of the linearized KZK
equation for higher source level (po= 100 kPa) and at
larger ranges is inconsistent with numerical results

obtained using a parabolic approximation. This can
be explained by neglecting within a quasilinear
approach the extra  nonlinear tapering of the
amplitude in the vicinity of the beam axis (to transfer
energy into higher harmonics).
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Fig.3. The dependence of the second harmonics amplitudes of the on-axis sound pressure vs. distance for
ka =~ 100 and po= 50/100 kPa in the distilled water at T= 20 °C (absorption is neglected). Circles show
the results of computation according to eq. (6), solid lines are numerical solutions of KZK equation [7].

At least the averaged third harmonic component is esteemed by the simple direct integration formulae:

3(ka)28

(p(a,)=

The integration (7) is illustrated by figure 3,
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Fig.3. The dependence of the third harmonic component amplitude of the average sound pressure vs. distance
between transducers for ka =~ 100 and po= 50/100 kPa in the distilled water at 7= 20 °C (absorption is
neglected). Circles show the results of computation according to eq. (7), solid lines are from averaged

numerical solutions of KZK equation [7].
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CONCLUSION

The approach we develop is oriented for standard
packages firmware PC level. It tends to use
combinations of asymptotics and special integral
sums to cover difficult parts of integration area. The
main profit of resonance harmonics method, we
consider here as theoretical formulation, is a
possibility of expressing an acoustic nearfield by
quadrature components. There is also obvious
possible to apply the parabolic approximation and
include higher nonlinear constants as for example
via state equations. The forthcoming results we see
in foundation of measurement methods of new
parameters  (nonlinearity  factors, absorption
coefficients) that are involved in the considered
scheme.
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