PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Centrum lidarowe: lidar ramanowski i akcesoria

Identyfikatory
Warianty tytułu
EN
Lidar center: Raman lidars – basic and specialized
Języki publikacji
PL
Abstrakty
PL
Wyprowadzono z równania lidaru rozproszeniowego algorytm rekurencyjny inwersji danych lidarowych. Poddano go weryfikacji drogą symulacji komputerowej, a następnie zastosowano do rzeczywistych pomiarów lidarowych zmian dobowych profili pionowych aerozolu w Salonikach. Zaprezentowano wyniki pomiarów lidarowych realizowanych w czasie pożarów lasów w Atenach w 2002 r. Przedstawiono zalety lidaru ramanowskiego na tle innych lidarów.
EN
The backscattenng lidar and Raman lidar are evaluated. Additionally, some data on vertical sounding with the backscattering lidar of the troposphere of Athens and Thessalonica (Greece), are presented. In Athens, the diurnal changes in vertical pollution, as well as, the pollution situation during fires in surroundings of Athens (which took place in 2002, have been studied. The paper indicates for LIDAR as the best tool for studying atmospheric aerosols and events that may take place in the atmosphere.
Rocznik
Strony
41--48
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
  • Instytut Fizyki, Wydział Fizyki Technicznej, Politechnika Poznańska, ul. Nieszawska 13 a, 60-965 Poznań, tel. 0/.../ 61 665 3188, fax 0/.../ 61 665 3699
autor
  • Instytut Fizyki, Wydział Fizyki Technicznej, Politechnika Poznańska, ul. Nieszawska 13 a, 60-965 Poznań, tel. 0/.../ 61 665 3188, fax 0/.../ 61 665 3699
  • Zografou Campus, Department of Physics, National Technikal Uniwersity of Athens, 157 80 Athens, Greece, tel. +30 1 772 2987, fax +30 1 772 2928
Bibliografia
  • [1] Klett J.D.: Stable analytical inversion solution for processing lidar returns, Appl. Opt., 1981, 20(2), 211-220.
  • [2] Peppler R.P., Bahrmann C.P., Barnard J.C., Campbell J.R., Cheng M.D., Ferrare R.A., Halthore R.N., Heilman L.A., Hlavka D.L., Laulainen N.S., Lin C.J., Ogren J.A., Poellot M.R., Remer L.A., Sassen K., Spinhirne J.D., Splitt M.E. i Turner D.D.: ARM Southern Great Plains Site Observations of the Smoke Pall Associated with the 1998 Central American Fires; Bull. Amer. Meteorolog. Soc., 2000, 8 (11), 2563-2591.
  • [3] Beyerle G., Neuber R. i Schrems O.: Multiwavelength lidar measurements of stratospheric aerosols above Spitsbergen during winter 1992/93; Geophys. Res. Lett., 1994, 21 (1), 57-60.
  • [4] Althausen D., Muller D., Ansmann A., Wandinger U., Hube H., Clauder E. i Zorner S.: Scanning 6 – Wavelength 11 – Channel Aerosol Lidar; J. Atmos. Oceanic Technol., 2000, 17, 1469-1482.
  • [5] Wu B. i Lu D.: Monitoring the Evolution of 1991 Pinatubo Aerosols Over BEIJING by Combining Twilight Observations with Lidar Detection; J. Geophys. Res., 1993, 98(12), 22995-23001.
  • [6] Wilson J.C., Jonsson H.H., Brock C.A., Toohey D.W., Avalone L.M., Baugardner D., Dye J.E., Poole L.R., Woods D.C., De Coursey R.J., Osborn M., Pitts M.C., Kelley K.K., Chan K.R., Ferry G.V., Loewenstein M., Podolske J.R. i Weaver A.: In Situ Observations of Aerosol and Chlorine Monoxide After the 1991 Eruption or Mount Pinatubo: Effect of Reactions on Sulfate Aerosol; Science, 1991, 261, 1140–1143.
  • [7] Ansmann A., Wagner F., Wandinge U. i Mattis I.: Pinatubo aerosol and stratospheric ozone reduction: Observations over Central Europe; J. Geophys. Res., 1996, 101(D13), 18775-18785.
  • [8] Chan K.P. i Killinger D.K.: Short pulse coherent Doppler Nd : YAG Lidar; Opt. Engineer., 1991, 30(1), 49-54.
  • [9] Yoshiyama H., Ohi A. i Ohta K.: Measurement of Particle Size Distribution of Ambient Aerosol by Bistatic Lidar System; J. Aerosol Res., Jpn., 1999, 14(2), 111-118.
  • [10] Yoshiyama H., Ohi A. i Ohta K.: Derivation of the aerosol size distribution from a bistatic system of multiwavelength laser with the singular value decomposition method; Appl. Optics, 1996, 35(15), 2642-2648.
  • [11] Ansmann A., Riebesell M., Wandinger U., Weitkamp C., Viss E., Lahmann W. i Michaelis W.: Combined Raman Elastic – Backscatter LIDAR for Vertical Profiling of Moisture, Aerosol Extinction, Backscatter and LIDAR Ratio; Appl. Phys. B, 1992, B55, 18-28.
  • [12] Ansmann A., Riebesell M. i Wietkamp C.: Measurement of atmospheric aerosol extinction profiles with a Raman lidar; Optics Lett., 1990, 15(13), 746-748.
  • [13] Bisso S E., Goldsmith J.E.M. i Mitchel M.G.: Narrow – band, narrow – field – of – view Raman lidar with combined day and night capability for tropospheric water – vapor profile measurements; Appl. Optics, 1999, 38(9), 1841-1849.
  • [14] Shibata T., Sakai T., Hayashi M., Ojio T., Kwon S.A. i lwasaka Y.: Raman Lidar Observations: Simultaneous Measurements of Water Vapor, Temperature and Aerosol Vertical Profiles, Part II, J. Geomagn. Geoelectr., 1996, 48, 1137-1144.
  • [15] Goldsmith J.E., Blair F.H., Bisson S.E. i Turner D.D.: Turn – key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols; Appl. Optics, 1998, 37(21), 4979-4990.
  • [16] Vehring R.: Linear Raman Spectroscopy on Aquous Aerosols: Influence of Nonlinear Effects on Detection Limits; J. Aerosol Sci., 1998, 12(1/2), 65-79.
  • [17] Ansmann A., Wandinger U., Riebesell M., Weitkamp C. i Michaelis W.: Independent measurement of extinction and backscatter profiles in cirrus clauds by using a combined Raman eastic – backscatter lidar; Appl. Optics, 1992, 31(33), 7113-7131.
  • [18] Eichinger W.E., Cooper D.I., Parlange M. i Katul G.: The Application of a Scanning, Water Raman – Lidar as a Probe or the Atmospheric Baundary Layer; IEEE Transactions on Geoscience and Remote Sensing, 1993, 31(1), 70-79.
  • [19] Batchvarova E. i Gryning S.E.: Applied Model for the Growth of the Daytime Mixed Layer; Boundary – Layer Meteorology 1990, 56, 261-274.
  • [20] Cohen A., Cooney J.A. i Geller K.N.: Atmospheric temperature profiles from lidar measurements of rotational Raman and elastic scattering; Appl. Optics, 1976, 15(11), 2896-2901.
  • [21] Shibata T., Kobuchi M. i Maeda M.: Measurements of density and temperature profiles in the middle atmosphere with a XeF lidar; Appl. Optics, 1986, 25(5), 685-688.
  • [22] Ferrare R.A., Melfi S.H., Whitemann D.N., Evans K.D., Schmidlin F.J. i O'C Starr D.: A Comparison of Wayter vapor Measurements Made by Raman Lidar and Radiosonds; J. Atmos. Oceanic Technol., 1995, 12(6), 1177-1195.
  • [23] Demoz B., Starr D., Whitemann D., Evans K., Hlavka D. i Peravali R.: Raman LIDAR Detection of Cloud Base; Geophys. Res. Lett., 2000, 27(13), 1899-1902.
  • [24] Whitemann D.N.: Claud liquid water, mean droplet radius, and number density measurements using a Raman lidar; J. Geophys. Res., 1999, 104(D24), 31411-31419.
  • [25] Whitemann D.N., Evans K.D., Demoz B., O’C Starr D., E.W. Eloranta, D. Tobin, W. Feltz, G.J. Jedlovec, S.I. Gutmann, G.K. Schwemmer, M. Cadirola, S.H. Melfi i F.J. Schmidlin: Raman lidar measurements of water vapor and cirrus clouds during the passage of Hurricane Bonnie; J. Geophys. Res., 2001, 106(D6), 5211-5225.
  • [26] Sakai T., Shibata T., Kwon S.A., Kim Y.S., Tamura K. i lwasaka Y.: Free troposphere aerosol backscatter, depolarization ratio, and relative humidity measured with the Raman lidar at Nagoya in 1994-1997: contributions of aerosols from the Asian Continent and the Pacific Ocean; Atmos. Environ., 2000, 34, 431-442.
  • [27] Tomasi F., Perrone M.R. i Protopapa M.L.: Monitoring O3 with solar – blind Raman lidars; Appl. Optics, 2001, 40(9), 1314-1320.
  • [28] Ancellet G., Papayannis A., Pelon J. i Megie G.: DIAL Tropospheric Ozone Measurements Using a Nd: YAG Laser and the Raman Shifting Technique; J. Atmos. Oceanic Tochnol., 1989, 6, 832-839.
  • [29] Altmann J., Lahmann W. i Weitkamp C.: Remote measurement of atmospheric N2O with DF laser lidar; Appl. Optics, 1980, 19(20), 3453-3457.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f19be04-c361-45db-8027-bece84dd0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.