PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization techniques of sandwich-type TiO₂/QD composites for low-cost quantum dots' solar cell

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There is a high impact of the solar cells on energy manufacturing. For several years the energy efficiency was limited due to base-materials' structural and technological limits. High increase of energy harvesting of solar cells has been observed since the first solar cell based on dye-sensitized colloidal TiO₂ films occurred. One of the most promising solutions are used quantum dots (QD) for light energy conversion. In this paper, we described the use of selected characterization techniques for sandwich-type TiO₂/QD composites for a low-cost quantum dots' solar cell in the point of view of mass manufacturer of solar cells and research and development laboratory. Moreover, the increasing role of Raman spectroscopy and mapping for the TiO₂/QD was presented and compared with other necessity techniques for solar cell investigations such as ellipsometry, atomic force microscopy (AFM), and secondary ion mass spectrometry (SIMS).
Słowa kluczowe
Twórcy
  • Department of Physical Chemistry and Physicochemical Basis of Environmental Engineering, Institute of Environmental Engineering in Stalowa Wola, John Paul II Catholic University of Lublin, ul. Kwiatkowskiego 3A, 37-450 Stalowa Wola, Poland
  • ML System S.A, Zaczernie 190 G, 36-062 Zaczernie, Poland
  • Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznan University of Life Science, ul. Wojska Polskiego 38/42, 60-637 Poznań, Poland
autor
  • Foundation for Research and Development, ul. Legnicka 65, 54-206 Wrocław, Poland
  • Faculty of Automatics and Robotics, Wroclaw School of Information Technology, ul. Wejherowska 28, 54 - 239 Wroclaw, Poland
autor
  • Department of Physics and Medical Engineering, Rzeszów University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
Bibliografia
  • [1] B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based ondye-sensitized colloidal TiO2films, Nature 353 (1991) 737–740, http://dx.doi.org/10.1038/353737a0.
  • [2] M.A.K.L. Dissanayakea, DH.K.D.W.M.N. Divarathna, C.B. Dissanayake, G.K.R.Senadeera, P.M.P.C. Ekanayake, C.A. Thotawattage, An innovative TiO2nanoparticle/nanofibre/nanoparticle, three layer composite photoanode forefficiency enhancement in dye-sensitized solar cells, J. Photochem. Photobiol.A 322–323 (2016) 110–118, http://dx.doi.org/10.1016/j.jphotochem.2016.02.017.
  • [3] M. Grätzel, Solar energy conversion by dye-sensitized photovoltaic cells,Inorg. Chem. 44 (20) (2005) 6841–6851, http://dx.doi.org/10.1021/ic0508371.
  • [4] F.E. Gálvez, E. Kemppainen, H. Míguez, J. Halme, Effect of diffuse lightscattering designs on the efficiency of dye solar cells: an integral optical andelectrical description, J. Phys. Chem. C 116 (21) (2012) 11426–11433, http://dx.doi.org/10.1021/jp2092708.
  • [5] A. Tereshchenko, V. Smyntyna, A. Ramanavicius, Interaction mechanismbetween TiO2nanostructures and bovine leukemia virus proteins inphotoluminescence-based immunosensors, RSC Adv. 8 (2018) 37740–37748,http://dx.doi.org/10.1039/c8ra07347c.
  • [6] R. Viter, A. Tereshchenko, V. Smyntyna, J. Ogorodniichuk, N. Starodub, R.Yakimova, V. Khranovskyy, A. Ramanavicius, Toward development of opticalbiosensors based on photoluminescence of TiO2 nanoparticles for thedetection of Salmonella, Sens. Actuators B-Chem. 252 (2017) 95–102, http://dx.doi.org/10.1016/j.snb.2017.05.139.
  • [7] M. Dominik, E. Roźniecka, Ł. Wachnicki, J. Niedziółka-Jönsson, M. Godlewski,W.J. Bock, M. Śmietana, Biofunctionalization effectiveness of titanium oxidethin films obtained with physical and chemical vapour deposition methodsfor optical label-free biosensing applications, Proc. Tech. 27 (2017) 232–233,http://dx.doi.org/10.1016/j.protcy.2017.04.098.
  • [8] P. Joshi, L. Zhang, D. Davoux, Z. Zhu, D. Galipeau, H. Fong, Q. Qiao, Compositeof TiO2nanofibers and nanoparticles for dye-sensitized solar cells withsignificantly improved efficiency, Energy Environ. Sci. 3 (2010) 1507–1510,http://dx.doi.org/10.1039/C0EE00068J.
  • [9] K. Asagoe, Y. Suzuki, S. Ngamsinlapasathian, S. Yoshikawa, TiO2-anatasenanowire dispersed composite electrode for dye-sensitized solar cells, J. Phys.Conf. Ser. 61 (2007) 1112–1116, http://dx.doi.org/10.1088/1742-6596/61/1/220.
  • [10] J.B. Baxter, E.S. Aydil, Nanowire-based dye-sensitized solar cells, Appl. Phys.Lett. 86 (2005) 053114, http://dx.doi.org/10.1063/1.1861510.
  • [11] D. Sabba, S. Agarwala, S.S. Pramana, S. Mhaisalkar, A maskless synthesis of TiO2-nanofiber-based hierarchical structures for solid-state dye-sensitizedsolar cells with improved performance, Nanoscale Res. Lett. 9 (2014) 14–23,http://dx.doi.org/10.1186/1556-276X-9-14.
  • [12] S. Pavasupree, S. Ngamsinlapasathian, M. Nakajima, Y. Suzuki, S. Yoshikawa,Synthesis, characterization, photocatalytic activity and dye-sensitized solarcell performance of nanorods/nanoparticles TiO2with mesoporous structure,J. Photochem. Photobiol. A 184 (2006) 163–169, http://dx.doi.org/10.1016/j.jphotochem.2006.04.010.
  • [13] B. Tan, Y. Wu, Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites, J. Phys. Chem. B 110 (32) (2006) 15932–15938, http://dx.doi.org/10.1021/jp063972n.
  • [14] G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Use ofhighly-ordered TiO2 nanotube arrays in dye-sensitized solar cells, Nano Lett.6 (2) (2006) 215–218, http://dx.doi.org/10.1021/nl052099j.
  • [15] M.C. Kao, H.Z. Chen, S.L. Young, C.Y. Kung, C.C. Lin, The effects of the thickness of TiO2 films on the performance of dye-sensitized solar cells, Thin Solid Films517 (2009) 5096–5099, http://dx.doi.org/10.1016/j.tsf.2009.03.102.
  • [16] S.C. Yang, D.J. Yang, J. Kim, J.M. Hong, H.G. Kim, I.D. Kim, H. Lee, Hollow TiO2 hemispheres obtained by colloidal templating for application indye-sensitized solar cells, Adv. Mater. 20 (2008) 1059–1064, http://dx.doi.org/10.1002/adma.200701808.
  • [17] J.G. Lee, J.H. Cheon, H.S. Yang, D.K. Lee, J.H. Kim, Enhancement of photovoltaicperformance in dye-sensitized solar cells with the spin-coated TiO2 blockinglayer, J. Nanosci. Nanotechnol. 12 (2012) 6026–6030, http://dx.doi.org/10.1166/jnn.2012.6410.
  • [18] T. Charinpanitkul, P. Lorturn, W. Ratismith, N. Viriya-empikul, G. Tumcharern, J. Wilcox, Hydrothermal synthesis of titanate nanoparticle/carbon nanotubehybridized material for dye sensitized solar cell application, Mater. Res. Bull.46 (2011) 1604–1609, http://dx.doi.org/10.1016/j.materresbull.2011.06.012.
  • [19] S. Ito, P. Chen, P. Comte, M.K. Nazeeruddin, P. Liska, P. Pechy, M. Graetzel, Fabrication of screen-printing pastes from TiO2powders for dye-sensitisedsolar cells, Prog. Photovolt. 15 (2007) 603–612, http://dx.doi.org/10.1002/pip.768.
  • [20] S. Ruhle, M. Shalom, A. Zaban, Quantum-dot-sensitized solar cells,ChemPhysChem 11 (2010) 2290–2304, http://dx.doi.org/10.1002/cphc.201000069.
  • [21] Z. Penga, Z. Liu, Y. Liu, J. Chen, C. Li, W. Lia, L. Liao, J. Chen, Improving on theinterparticle connection for performance enhancement of flexible quantumdot sensitized solar cells, Mater. Res. Bull. 105 (2018) 91–97, http://dx.doi.org/10.1016/j.materresbull.2018.04.039.
  • [22] M.B. de la Mora, O. Amelines-Sarria, B.M. Monroy, C.D. Hernández-Pérez, J.E. Lugo, Materials for downconversion in solar cells: perspectives andchallenges, Sol. Energy Mater. Sol. C 165 (2017) 59–71, http://dx.doi.org/10.1016/j.solmat.2017.02.016.
  • [23] A. Majchrowski, G. Lakshminarayana, A.H. Reshak, E. Michalski, M. Olifierczuk, K. Ozga, L. Jaroszewicz, T. Lukasiewicz, M. Szota, M. Nabialek, Laser operated elasto-optical features of La2CaB10O19:Pr3+ polymernanocomposites, J. Lumin. 132 (10) (2012) 2577–2580, http://dx.doi.org/10.1016/j.jlumin.2012.04.042.
  • [24] P.R. Ghediya, T.K. Chaudhuri, V. Raj, D. Chugh, K. Vora, L. Li, H.H. Tan, C. Jagadish, Direct-coated Cu2SnS3films from molecular solution inks for solarphotovoltaics, Mater. Sci. Semicond. Proc. 88 (2018) 120–126, http://dx.doi.org/10.1016/j.mssp.2018.07.041.
  • [25] S. Das, K. Sa, I. Alam, P. Mahanandia, Synthesis of CZTS QDs decorated reducedgraphene oxide nanocomposite as possible absorber for solar cell, Mater. Lett.232 (2018) 232–236, http://dx.doi.org/10.1016/j.matlet.2018.08.074.
  • [26] M.A. Mousa, M. Khairy, H.M. Mohamed, Dye-sensitized solar cells based on anN-doped TiO2and TiO2-graphene composite electrode, J. Electron. Mater. 47(10) (2018) 6241–6250, http://dx.doi.org/10.1007/s11664-018-6530-0.
  • [27] B.V. Dias, G.T. Tractz, A. Viomar, G.A.R. Maia, M.T. Da Cunha, P.R.P. Rodrigues, Photoelectrochemical behavior of the cell FTO/TiO2/CeO2/ N719 obtainedfrom the Pechini and precipitation of cerium oxide methods, J. Electron.Mater. 47 (9) (2018) 5556–5563, http://dx.doi.org/10.1007/s11664-018-6465-5.
  • [28] C. Gao, Z. Zhang, X. Li, L. Chen, Y. Wang, Y. He, F. Teng, J. Zhou, W. Han, E. Xie,Synergistic effects in three-dimensional SnO2/TiO2/CdS multi-hetero junctionn structure for highly efficient photo electrochemical hydrogen production,Energy Mater. Sol. Cells 141 (2015) 101–107, http://dx.doi.org/10.1016/j.solmat.2015.05.026.
  • [29] M. Banski, M. Chrzanowski, G. Zatryb, J. Misiewicz, A. Podhorodecki, Enhanced photoluminescence stability of CdS nanocrystals through a zincacetate reagent, RSC Adv. 8 (2018) 25417–25422, http://dx.doi.org/10.1039/c8ra03504k.
  • [30] S.M.P. Meroni, Y. Mouhamad, F. De Rossi, A. Pockett, J. Baker, R. Escalante, J. Searle, M.J. Carnie, E. Jewell, G. Oskam, T.M. Watson, Homogeneous andhighly controlled deposition of low viscosity inks and application on fullyprintable perovskite solar cells, Sci. Technol. Adv. Mater. 19 (1) (2018) 1–9,http://dx.doi.org/10.1080/14686996.2017.1406777.
Uwagi
1. This work was supported by the National Centre for Research and Development under the project No. POIR.01.01.01.00-0598/15-00 and UDA-RPPK.01.03.00-18-025/13-00.
2. This work was partially supported by ML System S.A, Zaczernie 190G, 36-062 Zaczernie, Poland.
3. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f17cad9-59ce-4b87-9081-11a8c37720ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.