PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the Möbius invariant principal functions of Pincus

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this semi-expository short note, we prove that the only homogeneous pure hyponormal operator T with rank (T∗T − TT∗) = 1, modulo unitary equivalence, is the unilateral shift.
Rocznik
Strony
391--407
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
  • Indian Statistical Institute, Theoretical Statistics and Mathematics Unit, Banaglore 560 059, India
  • Indian Statistical Institute, Theoretical Statistics and Mathematics Unit, Banaglore 560 059, India
  • Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382 055, India
Bibliografia
  • [1] B. Bagchi, G. Misra, Constant characteristic functions and homogeneous operators, J. Operator Theory 37 (1997), 51–65.
  • [2] B. Bagchi, G. Misra, Homogeneous operators and projective representations of the Möbius group: a survey, Proc. Indian Acad. Sci. Math. Sci. 111 (2001), 415–437.
  • [3] B. Bagchi, G. Misra, The homogeneous shifts, J. Funct. Anal. 204 (2003), 293–319.
  • [4] B. Bagchi, S. Hazra, G. Misra, A product formula for homogeneous characteristic functions, Integral Equations Operator Theory 95 (2023), Article no. 8.
  • [5] C. Berger, B.I. Shaw, Selfcommutators of multicyclic hyponormal operators are always trace class, Bull. Amer. Math. Soc. 79 (1973), 1193–119.
  • [6] R.W. Carey, J.D. Pincus, An invariant for certain operator algebras, Proc. Natl. Acad. Sci. USA 71 (1974), 1952–1956.
  • [7] R.W. Carey, J.D. Pincus, Construction of seminormal operators with prescribed mosaic, Indiana Univ. Math. J. 23 (1974), 1155–1165.
  • [8] A. Chattopadhyay, K.B. Sinha, On the Carey–Helton–Howe–Pincus trace formula, J. Funct. Anal. 274 (2018), 2265–2290.
  • [9] K.F. Clancey, Seminormal Operators, Lecture Notes in Mathematics, vol. 742, Springer, Berlin, 1979.
  • [10] K.F. Clancey, B.L. Wadhwa, Local spectra of seminormal operators, Trans. Amer. Math. Soc. 280 (1983), 415–428.
  • [11] D.N. Clark, G. Misra, On homogeneous contractions and unitary representations of SU(1, 1), J. Operator Theory 30 (1993), 109–122.
  • [12] I.C. Gohberg, M.G. Krein, Introduction to the Theory of Linear Nonself-adjoint Operators, Translations of Mathematical Monographs, vol. 18, Providence, RI: AMS, 1969.
  • [13] B. Gustafsson, M. Putinar, Hyponormal Quantization of Planar Domains: Exponential Transform in Dimension Two, Lecture Notes in Mathematics, vol. 2199, Springer Cham, 2017.
  • [14] J. Helton, R. Howe, Integral operators: traces, index, and homology, Proc. Conf. Operator Theory, Dalhousie Univ., Halifax 1973, Lect. Notes Math., vol. 345, Springer, Berlin, 1973, 141–209.
  • [15] A. Korányi, G. Misra, A classification of homogeneous operators in the Cowen–Douglas class, Adv. Math. 226 (2011), 5338–5360.
  • [16] M. Martin, M. Putinar, Lectures on Hyponormal Operators, Operator Theory: Advances and Applications, vol. 39, Birkhäuser Verlag, Basel, 1989.
  • [17] G. Misra, Curvature and the backward shift operator, Proc. Amer. Math. Soc. 91 (1984), 105–107.
  • [18] J.D. Pincus, Commutators and systems of singular integral equations, I, Acta Math. 121 (1968), 219–249.
  • [19] J.D. Pincus, The spectrum of seminormal operators, Proc. Natl. Acad. Sci. USA 68 (1971), 1684–1685.
  • [20] J.D. Pincus, The determining function method in the treatment of commutator systems, Hilbert Space Operators Operator Algebras, Colloquia Math. Soc. Janos Bolyai 5 (1972), 443–477.
  • [21] M. Putinar, Extensions scalaires et noyaux distribution des opérateurs hyponormaux, C.R. Acad. Sci. Paris, Sér. I Math. 301 (1985), 739–741.
  • [22] M. Putinar, Extreme hyponormal operators, Special Classes of Linear Operators and Other Topics, Operator Theory: Advances and Applications, vol. 28, Birkhäuser, Basel, 1988, 249–265.
  • [23] C.R. Putnam, An inequality for the area of hyponormal spectra, Math. Z. 116 (1970), 323–330.
  • [24] J. Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc. 117 (1965), 469–476.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f16ff43-5640-4371-8864-9537ff7efddf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.