Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Tropical cyclone Amphan is the first super cyclone that happened in the north Indian Ocean in the last 20 years. In this work, multi-platform datasets were used to investigate the responses of the upper ocean to cyclone Amphan. The most striking response was the cold wake left by the cyclone spanning the entire Bay of Bengal with an amplitude up to ∼4°C. Satellite salinity observations revealed that the maximum increase in surface salinity was ∼1.5 PSU on the right side of the track of Amphan. Surface circulation was also observed to be modulated with the passage of a cyclone with a rightward bias in the change in its speed and direction. The currents observed from a moored buoy showed strong inertial oscillations. Argo observations showed that changes induced by the cyclone occurred up to 150 m depth of the cyclone and ocean heat content in the upper 150 m depth decreased due to the passage of the cyclone. There was an enhancement of surface chlorophyll concentration (∼1.5 mg/m3) after the passage of the cyclone, which was centred along the track of the cyclone where the winds were the highest. Mixed layer heat and salinity budget analysis showed that the sea surface cooling and increase in salinity was primarily driven by vertical mixing processes, though horizontal advection contributed meagrely. This study also brings forward the fact that regional differences exist in the responses of the ocean to the forcing of cyclones.
Czasopismo
Rocznik
Tom
Strony
131--144
Opis fizyczny
Bibliogr. 48 poz., rys., wykr.
Twórcy
autor
- Regional Remote Sensing Centre – East National Remote Sensing Centre, ISRO, Kolkata, India
autor
- Regional Remote Sensing Centre – East National Remote Sensing Centre, ISRO, Kolkata, India
Bibliografia
- 1. Babin, S.M., Carton, J.A., Dickey, T.D., Wiggert, J.D., 2004. Satellite evidence of hurricane-induced phytoplankton blooms in an oceanic desert. J. Geophys. Res. 109, C03043. https://doi.org/10.1029/2003JC001938
- 2. Behera, S.K., Deo, A.A., Salvekar, P.S., 1998. Investigation of mixed layer response to Bay of Bengal cyclone using a simple ocean model. Meteorol. Atmos. Phys. 65, 77-91. https://doi.org/10.1007/BF01030270
- 3. Bender, M.A., Ginis, I., Kurihara, Y., 1993. Numerical simulations of tropical cyclone-ocean interaction with a highresolution coupled model. J. Geophys. Res. 98, 23245. https://doi.org/10.1029/93JD02370
- 4. Black, P.G., 1983. Ocean temperature changes induced by tropical cyclones. The Pennsylvania State University, 278 pp.
- 5. Black, W.J, Dickey, T.D., 2008. Observations and analyses of upper ocean responses to tropical storms and hurricanes in the vicinity of Bermuda. J. Geophys. Res. Oceans. 113, C08009. https://doi.org/10.1029/2007JC004358
- 6. Burpee, R.W., Black, M.L., 1989. Temporal and spatial variations of rainfall near the centers of two tropical cyclones. Mon. Weather Rev. 117, 2204-2218.
- 7. Chacko, N., Ravichandran, M., Rao, R.R., Shenoi, S.S.C., 2012. An anomalous cooling event observed in the Bay of Bengal during June 2009. Ocean Dynam. 62, 671-681. https://doi.org/10.1007/s10236-012-0525-9
- 8. Chacko, N., 2017. Chlorophyll bloom in response to tropical cyclone Hudhud in the BoB: Bio-Argo subsurface observations. Deep Sea Res. Pt. I. 124, 66-72. https://doi.org/10.1016/j.dsr.2017.04.010
- 9. Chacko, N., 2018. Insights into the haline variability induced by cyclone Vardah in the BoB using SMAP salinity observations. Remote Sens. Let. 9 (12), 1205-1213. https://doi.org/10.1080/2150704X.2018.1519271
- 10. Chacko, N., 2019. Differential chlorophyll blooms induced by tropical cyclones and their relation to cyclone characteristics and ocean pre-conditions in the Indian Ocean. J. Earth Syst. Sci. 128, 177. https://doi.org/10.1007/s12040-019-1207-5
- 11. Chen, C.T.A., Liu, C.T., Chuang, W.S., Yang, Y.J., Shiah, F.K., Tang, T.Y., Chung, S.W., 2003. Enhanced buoyancy and hence upwelling of subsurface Kuroshio waters after a typhoon in the southern East China Sea. J. Marine Syst. 42, 65-79.
- 12. Chen, L.S., Li, Y., Cheng, Z.Q., 2010. An overview of research and forecasting on rainfall associated with landfalling tropical cyclones. Adv. Atmos. Sci. 27, 967-976.
- 13. Cheung, H.F., Pan, J., Gu, Y., Wang, Z., 2013. Remote sensing observation of ocean responses to Typhoon Lupit in the northwest Pacific. Int. J. Remote Sens. 34, 1478-1491.
- 14. Chu, P.C., Veneziano, J.M., Fan, C., 2000. Response of the South China Sea to tropical cyclone Ernie 1996. J. Geophys. Res. 105 (C6), 3991-14009.
- 15. Cione, J.J., Uhlhorn, E.W., 2003. Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Weather Rev. 131, 1783-1796.
- 16. Corbosiero, K.L., Molinari, J., 2003. The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci. 60, 366-376
- 17. Dare, R.A., McBrie, A., 2011. Sea Surface Temperature Response to Tropical Cyclones. Mon. Weather Rev. 139 (12), 3798-3808. https://doi.org/10.1175/MWR-D-10-05019.1
- 18. D’Asaro, E.A., Sanford, T.B., Niiler, P.P., Terrill, E.J., 2007. Cold wake of Hurricane Frances. Geophys. Res. Lett. 34, L15609. https://doi.org/10.1029/2007GL030160
- 19. Du, J., Park, K., 2019. Estuarine salinity recovery from an extreme precipitation event: Hurricane Harvey in Galveston Bay. Sci. Total Environ. 670, 1049-1059. https://doi.org/10.1016/j.scitotenv.2019.03.265
- 20. Gierach, M.M., Subrahmanyam, B., 2008. Biophysical responses of the upper ocean to major Gulf of Mexico hurricanes in 2005. J. Geophys. Res. 113, C04029. https://doi.org/10.1029/2007JC004419
- 21. Girishkumar, M.S., Suprit, K., Jayaram, C., Udaya Bhaskar, T.V.S., Ravichandran, M., Shesu, V., Rama Rao, E.P, 2014. Observed oceanic response to tropical cyclone Jal from a moored buoy in the south-western Bay of Bengal. Ocean Dynam. 64, 325-335. https://doi.org/10.1007/s10236-014-0689-6
- 22. Jayaram, C., Udaya Bhaskar, T.V.S., Kumar, J.P., Swain, D., 2019. Cyclone enhanced chlorophyll in the BoB as evidenced from satellite and BGC-Argo float observations. J. Indian Soc. Remote Sens. 47, 1875-1882. https://doi.org/10.1007/s12524-019-01034-1
- 23. Joseph, J.K., Balchand, A.N., Hareeshkumar, P.V., Rajish, G., 2007. Inertial oscillation forced by the September 1997 cyclone in the Bay of Bengal. Current Sci. 92 (2007), 790-794.
- 24. Kara, A.B., Rochford, P.A., Hurlbutt, H.E., 2000. Mixed layer depth variability and barrier layer formation over the North Pacific Ocean. J. Geophys. Res. 105 (C7), 16783-16801.
- 25. Lin, I.-I., Liu, W.T., Wu, C.-C., Wong, G.T.F., Hu, C., Chen, Z., Liang, W.-D., Yang, Y., Liu, K.-K., 2003. New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophys. Res. Lett. 30, 1718.
- 26. Lin, I.I., 2012. Typhoon induced phytoplankton blooms and primary productivity increase in the western North Pacific subtropical ocean. J. Geophys. Res. 117, C03039. https://doi.org/10.1029/2011JC007626
- 27. Mandal, S., Sil, S., Shee, A., Swain, D., Pandey, P.C., 2018. Comparative analysis of SCATSAT-1 gridded winds with Buoys, ASCAT, and ECMWF winds in the Bay of Bengal. IEEE J. Sel. Top. Appl. 11 (3), 845-851. https://doi.org/10.1109/JSTARS.2018.2798621
- 28. Maneesha, K., Murty, V.S.N., Ravichandran, M., Lee, T., Yu, W., McPhaden, M.J., 2012. Upper Ocean Variability in the BoB during the Tropical Cyclones Nargis and Laila. Prog. Oceanogr. 106, 49-61. https://doi.org/10.1016/j.pocean.2012.06.006
- 29. McPhaden, M.J., Meyers, G., Ando, K., Masumuto, Y., Murty, V.S.N., Ravichandran, M., Syamsudin, F., Vialard, J., Yu, L., Yu, W., 2009. RAMA: The Research Moored Array for African—Asian—Australian Monsoon Analysis and Prediction. B. Am. Meterol. Soc. 459-480. https://doi.org/10.1175/2008BAMS2608.1
- 30. Navaneeth, K.N., Martin, M.V., Joseph, K.J., Venkatesan, R., 2019. Contrasting the upper ocean response to two intense cyclones in the Bay of Bengal. Deep-Sea Res. Pt. I. https://doi.org/10.1016/j.dsr.2019.03.010
- 31. Paulson, C.A., Simpson, J.J., 1977. Irradiance measurements in the upper ocean. J. Phys. Oceanogr. 7, 952-956.
- 32. Prakash, K.R., Panth, V., 2017. Upper oceanic response to tropical cyclone Phailin in the Bay of Bengal using a coupled atmospheric-ocean model. Ocean Dyn. 67, 51-64. https://doi.org/10.1007/s10236-016-1020-5
- 33. Price, J.F., 1981. Upper ocean response to a hurricane. J. Phys. Oceanogr. 11, 153-175. https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2
- 34. Price, J.F., Sanford, T.B., Forristall, G.Z., 1994. Forced stage response to a moving hurricane. J. Phys. Oceanogr. 24, 233-260.
- 35. Qiu, W., Ren, F., Wu, L., Chen, L., Ding, C., 2019. Characteristics of tropical cyclone extreme precipitation and its preliminary causes in Southeast China. Meteorol. Atmos. Phys. 131, 613-626. https://doi.org/10.1007/s00703-018-0594-5
- 36. Rao, R.R., Sivakumar, R., 2000. Seasonal variability of the near-surface thermal structure and heat budget of the mixed layer of the tropical Indian Ocean from a new global ocean temperature climatology. J. Geophys. Res. 105, 995-1015. https://doi.org/10.1029/1999JC900220
- 37. Reul, N., Chapron, B., Grodsky, S.A., Guimbard, S., Kudryavtsev, V., Foltz, G.R., Balaguru, K., 2021. Satellite observations of the sea surface salinity response to tropical cyclones. Geophys. Res. Lett. 48, e2020GL091478. https://doi.org/10.1029/2020GL091478
- 38. Schade, L.R., Emanuel, K.A., 1999. The ocean’s effect on the in-tensity of tropical cyclones: Results from a simple coupled atmosphere—ocean model. J. Atmos. Sci. 56, 642-651.
- 39. Shang, S.L., Li, L., Sun, F.Q., Wu, J.Y., Hu, C.M., Chen, D.W., Ning, X.R., Qiu, Y., Zhang, C.Y., Shang, S.P., 2001. Changes of temperature and bio-optical properties in the South China Sea in response to Typhoon Lingling. Geophys. Res. Lett. 35, L10602.
- 40. Singh, O.P., Khan, T.A., Rahman, M.S., 2000. Changes in the frequency of tropical cyclones over the North Indian Ocean. Meteorol. Atmos. Phys. 75 (1-2), 11-20.
- 41. Singh, V.K., Koll, R.M. 2020. A review of the ocean-atmosphere in-teractions during tropical cyclones in the north Indian Ocean. https://arxiv.org/abs/2012.04384
- 42. Song, D., Xiang, L., Guo, L., Li, B., 2020. Estimating Typhoon-Induced Sea Surface Cooling Based upon Satellite Observations. Water 12, 3060. https://doi.org/10.3390/w12113060
- 43. Subrahmanyam, B., Rao, K.H., Rao, N.S., Murty, V.S.N., Sharp, R.J., 2002. Influence of a tropical cyclone on Chlorophyll-a Concentration in the Arabian Sea. Geophys. Res. Lett. 29 (22), 2065. https://doi.org/10.1029/2002GL015892
- 44. Sun, L., Yang, Y., Xian, T., Lu, Z., Fu, Y., 2010. Strong enhancement of chlorophyll a concentration by a weak typhoon. Mar. Ecol. Prog. Ser. 404, 39-50. https://doi.org/10.3354/meps08477
- 45. Sun, J., Vecchi, G., Soden, B., 2021. Sea Surface Salinity Response to Tropical Cyclones Based on Satellite Observations. Remote Sens. 13 (3), 420. https://doi.org/10.3390/rs13030420
- 46. Walker, N.D., Leben, R.R., Balasubramanian, S., 2005. Hurricaneforced upwelling and chlorophyll an enhancement within cold-core cyclones in the Gulf of Mexico. Geophys. Res. Lett. 32, L18610. https://doi.org/10.1029/2005GL023716
- 47. Yue, X., Zhang, B., Liu, G., Li, X., Zhang, H., He, Y., 2018. Upper Ocean Response to Typhoon Kalmaegi and Sarika in the South China Sea from Multiple-Satellite Observations and Numerical Simulations. Remote Sens. 10, 348. https://doi.org/10.3390/rs10020348
- 48. Zhang, H., Xiaohui, L., Renhao, W., Chen, D., Dongna, Z., Xiaodong, S., Yuan, W., Xunshu, S., Weifang, J., Linghui, Y., Yongfeng, Q., Di, T., Wenyan, Z., 2020. Sea Surface current response patterns to tropical cyclones. J. Marine Syst. 208, 103345. https://doi.org/10.1016/j.jmarsys.2020.103345
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f16178f-7a29-4bd0-bff1-45b80bf00075