PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Implant Safety Tool Application to Assist the Assessment of Radio-Frequency Radiation Exposure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper discusses a new Implant Safety Tool, used to assess the safety of patients with metal implants exposed to radio-frequency (RF) fields. This specialist tool is discussed on the example of pectus patients with titanium bar-implant inserted during the minimally invasive Nuss procedure. The authors created a 3D realistic model of a 34-year-old male patient with a Nuss bar-implant. A numerical analysis based on the finite-difference time-domain (FDTD) method was performed for a far field source in the form of a plane wave with the frequency of 64 MHz, which corresponds to the RF exposure generated by MRI devices at 1.5 T. The obtained results allow concluding that the concave Nuss bar-implant poses no risk during environmental and occupational RF field exposures.
Rocznik
Strony
24--33
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • AGH University of Science and Technology, Department of Electrical and Power Engineering, Mickiewicza 30 Avenue, 30-059 Krakow, Poland
  • University of Life Sciences in Lublin, Department of Applied Mathematics and Computer Sciences, Akademicka 13 Street, 20-950 Lublin, Poland
Bibliografia
  • 1. Antonowicz M., Kajzer A., Kajzer W. 2016. Application of reverse engineering in supporting the treatment of pectus carinatum. Conference of Information Technologies in Biomedicine, 217–225.
  • 2. Asmar A., Semenov I., Kelly Jr R., Stacey M. 2019. Abnormal response of costal chondrocytes to acidosis in patients with chest wall deformity. Experimental and Molecular Pathology, 106, 27–33.
  • 3. Betti S., Ciuti G., Ricotti L., Ghionzoli M., Cavallo F., Messineo A., Menciassi A. 2014. A sensorized Nuss bar for patient-specific treatment of Pectus Excavatum. Sensors, 14(10), 18096–18113.
  • 4. Cierpikowski P., Rzechonek A., Blasiak P., Lisowska H., Pniewski G., Le Pivert P. 2018. Surgical Correction of Pectus Excavatum by the Nuss Procedure: A 15-Year Experience Study. Clinical Investigation, 31–40.
  • 5. Destruel A., Fuentes M., Weber E., O’Brien K., Jin J., Liu F., Markus B., Crozier S. 2019. A numerical and experimental study of RF shimming in the presence of hip prostheses using adaptive SAR at 3 T. Magnetic Resonance in Medicine, 81(6), 3826–3839.
  • 6. Ewais M.M., Chaparala S., Uhl R., Jaroszewski D.E. 2018. Outcomes in adult pectus excavatum patients undergoing Nuss repair. Patient Related Outcome Measures, 9, 65.
  • 7. Farronato A., Ghionzoli M., Messineo A., Politi L., Divisi D., Gonfiotti A., Crisci R. 2019. Pectus excavatum in adolescents and children: the Nuss technique. Pediatric Medicine, 2, 32.
  • 8. Gas P., Miaskowski A. 2019. SAR optimization for multi-dipole antenna array with regard to local hyperthermia. Przeglad Elektrotechniczny, 95(1), 17–20. DOI: 10.15199/48.2019.01.05
  • 9. Gniadek-Olejniczak K., Makowski K., Olszewski A., Tomczykiewicz K., Krawczyk A., Mroz J. 2018. State-of-the-art approach towards magnetic resonance imaging of the nervous system structures in patients with cardiac implantable electronic devices. Neurologia i Neurochirurgia Polska, 52(6), 652–656.
  • 10. Guerin B., Iacono M.I., Davids M., Dougherty D.D., Angelone L.M., Wald L.L. 2019. The ”virtual DBS population”: five realistic computational models of deep brain stimulation patients for electromagnetic MR safety studies. Physics in Medicine and Biology, 64(3), 035021.
  • 11. Hasgall P.A., Di Gennaro F., Baumgartner C., Neufeld E., Lloyd B., Gosselin M.C., Payne D., Klingenbock A., Kuster N. 2018. IT’IS Database for thermal and electromagnetic parameters of biological tissues, Version 4.0. DOI: 10.13099/ VIP21000–04–0
  • 12. Huang Y.J., Lin K.H., Chen Y.Y., Wu T.H., Huang H.K., Chang H., Lee S.C., Chen J.E., Huang T.W. 2019. Feasibility and Clinical Effectiveness of Three-Dimensional Printed Model-Assisted Nuss Procedure. The Annals of Thoracic Surgery, 107(4), 1089–1096.
  • 13. ISO/TS 10974:2018 Assessment of the safety of magnetic resonance imaging for patients with an active implantable medical device
  • 14. Jovanovic D.B., Stankovic V., Cvetkovic N.N., Krstic D., Vuckovic D. 2019. The impact of human age on the amount of absorbed energy from mobile phone. COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 38(5), 1465–1479.
  • 15. Jaroszewski D.E., Velazco C.S. 2018. Minimally invasive pectus excavatum repair (MIRPE). Operative Techniques in Thoracic and Cardiovascular Surgery, 23(4), 198–215.
  • 16. Kim Y.J., Heo J.Y., Hong K.H., Lim B.Y., Lee C.S. 2019. Computer-aided design and manufacturing technology for identification of optimal nuss procedure and fabrication of patient-specific nuss bar for minimally invasive surgery of pectus excavatum. Applied Sciences, 9(1), 42.
  • 17. Kozlov M., Noetscher G.M., Nazarian A., Makarov S.N. 2015. Comparative analysis of different hip implants within a realistic human model located inside a 1.5 T MRI whole body RF coil. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 7913–7916. DOI: 10.1109/EMBC.2015.7320227
  • 18. Mat M.H., Jusoh M., Rahim H., Yusoff M.I. 2017. A brief review of the emf interaction: metal implantation and biological tissues. Advanced Science Letters, 23(6), 5565–5568.
  • 19. Mazurek P.A., Michałowska J., Koziel J., Gad R., Wdowiak A. 2018. The intensity of electromagnetic fields in the range of GSM 900, GSM 1800 DECT, UMTS, WLAN in built-up areas. Przeglad Elektrotechniczny, 2018, 94(12), 202–205.
  • 20. Miaskowski A., Gas P., Krawczyk A. 2016. SAR Calculations for titanium bar-implant subjected to microwave radiation. 17th International Conference Computational Problems of Electrical Engineering (CPEE), 1–4. DOI:10.1109/CPEE.2016.7738726
  • 21. Miaskowski A., Krawczyk A., Ishihara Y. 2012. A numerical evaluation of eddy currents distribution in the human knee with metallic implant. COMPEL–The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 31(5), 1441–1447.
  • 22. Muntean A., Stoica I., Saxena A.K. 2018. Pigeon chest: comparative analysis of surgical techniques in minimal access repair of pectus carinatum (MARPC). World Journal of Pediatrics, 14(1), 18–25.
  • 23. Osaci M. 2018. Numerical simulation methods of electromagnetic field in higher education: didactic application with graphical interface for FDTD method. International Journal of Modern Education and Computer Science, 10(8), 1–10
  • 24. Rechowicz K.J., Obeid M.F., Chemlal S., McKenzie F.D. 2015. Simulation of the critical steps of the Nuss procedure. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 3(4), 189–203.
  • 25. Safari M., Abdolali A. 2016. Dental Implants and Mobile-Phone Use: How implant presence and position affect antenna parameters, specific absorption rate, and current density. IEEE Antennas and Propagation Magazine, 58(5), 43–51.
  • 26. Sawicki B., Starzynski J., Wincenciak S. 2006. Numerical model of magnetic stimulation with metal implants. IEEE Transactions on Magnetics, 42(4), 783–786.
  • 27. Smondrk M., Benova M., Psenakova Z. 2018. Evaluation of SAR in human body model comprising of implanted pacemaker. 2018 ELEKTRO, 1–5. DOI: 10.1109/ELEKTRO.2018.8398336
  • 28. Syrek P., Skowron M. 2017. The impact of overhead lines for employees with stents, IOP Conference Series-Materials Science and Engineering, 200, 012013.
  • 29. Tayyab M., Sharawi M.S., Shamim A., Al-Sarkhi A. 2019. A low complexity RF based sensor array for lung disease detection using inkjet printing. International Journal of RF and Microwave ComputerAided Engineering, 29(4), e21586.
  • 30. Wang D., Yang Y., Vahala L., McKenzie F.D., Hao Z. 2017. A flexible microfluidic-based sensor for monitoring the bending and tilting of a metal bar for pectus excavatum (PE) patients. ASME 2017 International Mechanical Engineering Congress and Exposition, 1–6.
  • 31. Wyszkowska J., Jankowska M., Gas P. 2019. Electromagnetic Fields and Neurodegenerative Diseases. Przeglad Elektrotechniczny, 95(1), 129–133. DOI: 10.15199/48.2019.01.33
  • 32. Yao A., Zastrow E., Neufeld E., Kuster N. 2019. Efficient and Reliable Assessment of the Maximum Local Tissue Temperature Increase at the Electrodes of Medical Implants under MRI Exposure. Bioelectromagnetics, 40(6), 422–433.
  • 33. Ye D., Xu Y., Wang G., Feng X., Fu T., Zhang H., Jiang L.,Bai Y. 2015. Thermal effects of 2450 MHz microwave exposure near a titanium alloy plate implanted in rabbit limbs. Bioelectromagnetics, 36(4), 309–318.
  • 34. Yee K.S. 1966. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Transactions on Antennas and Propagation, 14(3), 302–307.
  • 35. Zradzinski P., Karpowicz J., Gryz K., Leszko W. 2018. Evaluation of the safety of users of active implantable medical devices (AIMD) in the working environment in terms of exposure to electromagnetic fields–Practical approach to the requirements of European Directive 2013/35/EU. International Journal of Occupational Medicine and Environmental Health, 31(6), 795–808.
  • 36. 1999/519/EC: Council Recommendation of 12 July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz). Official Journal of the European Communities, L 199, 59–70.
  • 37. 2013/35/EU: Directive 2013/35/EU of the European Parliament and of the Council of 26 June 2013 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields). Official Journal of the European Union, L 179, 1–21.
  • 38. Duke, 2019, https://itis.swiss/virtual-population/virtual-population/vip3/duke/
  • 39. Sim4Life, 2019, https://zmt.swiss/sim4life/
  • 40. Thoracic Surgery, 2019, https://thoracickey.com/surgery-for-pectus-and-other-congenital-chestwall-disorders/
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f15747c-4dc9-4097-a0ae-844e42223cbe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.