Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study investigates the propagation of higher-order solitons in lutetium aluminium garnet (Lu₃Al₅O₁₂ or LuAG) doped with cerium (Ce³⁺), a material known for its unique nonlinear optical properties. Using the nonlinear Schrödinger equation (NSE), the authors analyse the soliton formation and stability within this medium, exploring both normal and anomalous dispersion regimes. Experimental observations confirm the first occurrence of higher-order optical solitons in Lu₃Al₅O₁₂:Ce³⁺, highlighting the material potential for advanced photonic applications. The interplay between pulse duration, bandwidth, and material nonlinearities is examined to understand the dynamics governing soliton behaviour. The authors’ findings suggest that the exceptional optical characteristics of LuAG:Ce enable promising prospects for applications in optical communication, ultrafast lasers, and signal processing. The results emphasise the importance of ongoing research into soliton dynamics within this crystal, paving the way for innovative approaches in the development of next-generation photonic devices.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e155874
Opis fizyczny
Bibliogr. 19 poz., wykr.
Twórcy
autor
- Telecommunication Department, Faculty of Technology, University of Tlemcen, Tlemcen 13000, Algeria
autor
- Telecommunications and Smart Systems Laboratory, Faculty of Science and Technology, Ziane Achour University of Djelfa, Djelfa 17000, Algeria
Bibliografia
- [1] Michail, C. et al. Spectral efficiency of lutetium aluminum garnet (Lu3Al5O12:Ce) with microelectronic optical sensors. Microelectron. Reliab. 109, 113658 (2020). https://doi.org/10.1016/j.microrel.2020.113658.
- [2] Polyanskiy, M. N. Refractiveindex.info database of optical constants. Sci. Data 11, 94 (2024). https://doi.org/10.1038/s41597-023-02898-2.
- [3] Akhrib, Z. et al. Lithium ion codoping effect on structural, morpho-logical and photoluminescence spectroscopy of Lu3Al5O12: Ce3+ garnet powder material synthetized by sol gel method. Opt. Mater. 157, 116329 (2024). https://doi.org/10.1016/j.optmat.2024.116329.
- [4] Gallo, S., Veronese, I., Vedda, A. & Fasoli, M. Evidence of optically stimulated luminescence in Lu3Al5O12:Ce. Phys. Status Solidi A 216, 1900193 (2019). https://doi.org/10.1002/pssa.20190010.
- [5] Stolen, R. H & Ashkin, A. Optical Kerr effect in glass waveguide. Appl. Phys. Lett. 22, 294-296 (1973). https://doi.org/10.1063/1.1654644.
- [6] Sheik-Bahae, M et al. Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption. Phys. Rev. Lett. 65, 96 (1990). https://doi.org.10.1103/PhysRevLett.65.96.
- [7] Martínez, O. E., Gordon, J. P. & Fork, R. L. Negative group‑velocity dispersion using refraction. J. Opt. Soc. Am. A 1, 1003-1006 (1984). https://doi.org/10.1364/JOSAA.1.001003.
- [8] Fork, R. L., Martinez, O. E. & Gordon, J. P. Negative dispersion using pairs of prisms. Opt. Lett. 9, 150-152 (1984). https://doi.org/10.1364/OL.9.000150.
- [9] Weber, M. J., Milam, D. & Smith, W. L. Nonlinear refractive index of glasses and crystals. Opt. Eng. 17, 175463 (1978). https://doi.org/10.1117/12.7972266.
- [10] Chernikov, S. V. & Mamyshev, P. V. Femtosecond soliton propagation in fibers with slowly decreasing dispersion. J. Opt. Soc. Am. B 8, 1633-1641 (1991). https://doi.org/10.1364/JOSAB.8.001633.
- [11] Kuehl, H. H. Solitons on an axially nonuniform optical fiber. J. Opt. Soc. Am. B 5, 709-713 (1988). https://doi.org/10.1364/JOSAB.5.000709.
- [12] Meinel, R. Generation of chirped pulses in optical fibers suitable for an effective pulse compression. Opt. Commun. 47, 343-346 (1983). https://doi.org/10.1016/0030-4018(83)90042-1.
- [13] Lazaridis, P., Debarge, G. & Gallion, P. Optimum conditions for soliton launching from chirped sech2 pulses. Opt. Lett. 20, 1680-1682 (1995). https://doi.org/10.1364/OL.20.001680.
- [14] Agrawal, G. P. Fiber-Optic Communication Systems, 2nd ed. Ch. 10 (Wiley, New York, 2002).
- [15] Kubota, Y. & Odagaki, T. Numerical study of soliton scattering in inhomogeneous optical fibers. Phys. Rev. E 68, 026603 (2003). https://doi.org/10.1103/PhysRevE.68.026603.
- [16] Haus, H. A. & Islam, M. N. Theory of the soliton laser. IEEE J. Quantum Electron. 21, 1172-1188 (1985). https://doi.org/10.1109/JQE.1985.1072805.
- [17] Khelladi, M., Seddiki. O. & Bendimerad. F. T. Time-frequency decomposition of an ultrashort pulse: Wavelet decomposition. Radioengineering 17, 56-63 (2008). https://dspace.vut.cz/server/api/core/bitstreams/4fc2c417-3eec-44d6-bdc7-b000791206a7/content.
- [18] Khelladi, M., Seddiki, O. & Bendimerad. F. T. Nonlinear effect of an ultrashort laser pulse propagation in Ti:Sapphire Crystal. J. Comput. Theor. Nanosci. 6, 1640-1645 (2009). https://doi.org/10.1166/jctn.2009.1224.
- [19] Khelladi. M. Propagation pulse laser picoseconds in zirconium barium lanthanum aliminium sodium fiber. J. Comput. Theor. Nanosci. 9, 731-736 (2012). https://doi.org/10.1166/jctn.2012.2087.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f12fd9c-987b-4562-982a-761ff6b70895
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.