Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In certain small-gold mining activities in West Lombok, Indonesia, the tailings containing mercury are discharged to agricultural lands, reducing their productivity. One of the efforts to restore the land is by bioremediation of mercury, using mercury-resistant microbes. This study was aimed to isolate the mercury-resistant bacteria from small-scale gold mine tailings containing mercury, and to test their capability in accumulating mercury. Bacterial isolation and identification were conducted from nutrient broth supplemented with 5 ppm HgCl2. The isolated bacteria were tested for mercury accumulation in the nutrient broth containing 10, 20 and 30 ppm Hg for 24 hours, and in small-scale gold mine tailing containing 41.37 ppm Hg for 2 weeks. The results showed that there were four pure isolates of mercury-resistant bacteria which were identified as Brevundimonas vesicularis, Nitrococcus mobilis, Fusobacterium aquatile and Fusobacterium necrogenes. The highest Hg accumulation from nutrient broth liquid media containing 10, 20 and 30 ppm Hg was observed for Brevundimonas vesicularis. The mercury accumulation efficiency of the four bacteria applied to small-scale gold mine tailing containing mercury was in the order of Fusobacterium aquatile (76.1%) > Brevundimonas vesicularis (75.6%) > Fusobacterium necrogenes (74.4%) > Nitrococcus mobilis (74.2%). On the basis of the Hg accumulation efficiency of more than 75%, Fusobacterium aquatile and Brevundimonas vesicularis are prospective for bioremediation of mercury-contaminated soils.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
236--245
Opis fizyczny
Bibliogr. 36 poz., tab., rys.
Twórcy
autor
- Postgraduate Programme, Faculty of Agriculture, Brawijaya University, Jl. Veteran No 1 Malang 65145, Indonesia
autor
- Research Centre for Management of Degraded and Mining Lands, Faculty of Agriculture, Brawijaya University, Jl. Veteran No 1 Malang 65145, Indonesia
autor
- Research Centre for Management of Degraded and Mining Lands, Faculty of Agriculture, Brawijaya University, Jl. Veteran No 1 Malang 65145, Indonesia
Bibliografia
- 1. Badjoeri M. 2008. Capability test of Bacillus megaterium in absorbing mercury heavy metal. Limnology Research Centre, LIPI: Bogor (in Indonesian).
- 2. Barkay T. 1992. Mercury Cycle. Encyclopedia of Microbiology 3rd Ed. Academic Press. Inc. New York. 3: 65-74.
- 3. Barkay T., Miller S.M., Summers A.O. 2003. Bacterial mercury resistancefrom atoms to ecosystems. FEMSMicrobiol. Rev. 27: 355-384.
- 4. Bartosch S., Wolgast I., Spiek E., Bock E. 1999. Identification of nitrite-oxidizing bacteria with monoclonal antibodies recognizing the nitrite oxydoreductase. Applied and Environmental Microbiology, 65 (6), 4126-4133.
- 5. Brown N.L., Shih Y.C., Leang C., Glendinning K.J., Hobman J.L., Wilson J. 2002. Mercury transport and resistance. Biochemical Society Transactions, 30(4),715-718.
- 6. Buffle, J., Stumm W. 1994. General Chemistry of Aquatic Systems. In: Chemical and Biological Regulation of Aquatic Systems, J. Buffle and R.R. De Vitre (Eds). Lewis Publishers, Tokyo. P-42.
- 7. Canstein H.V., Kelly S., Li Y., Wagner-Dobler I. 2002. Species diversity improves the efficiency of mercury-reducing biofilm under changing environmental conditions. Applied and Environmental Microbiology, 68(6), 2829–2837.
- 8. Cappuccino J.G., Sherman N. 2002. Microbiology: a laboratory manual (8th edition,) Pearson. ISBN- 13: 978-0805325782.
- 9. Chang J.S., Chao Y.P., Law W.S. 998. Repeated fed-batch operations for microbial detoxification of mercury using wild type and recombinant mercury-resistant bacteria. Journal of Biotechnology, 64 (2-3), 219–230.
- 10. Chang J.S., Hwang Y.P., Fong Y.M., and Lin P.J. 1999. Detoxification of mercury by immobilized mercuric reductase. Journal of Chemical Technology and Biotechnology,74(10), 965–973.
- 11. Chojnacka K. 2010. Biosorption and bioaccumulation, the prospects for practical applications. Environment International, 36, 299–307.
- 12. Cooper S, 1991. Bacterial Growth and Division: Biochemistry and Regulation of Prokaryotic and Eukaryotic Division Cycles, Academic Press: San Diego, p. 501.
- 13. Fox B., Walsh C.T. 1982. Mercuric reductase: purification and characterization of a transposon-encoded flavoprotein containing an oxidation-reduction-active disulfide. Journal of Biological Chemistry, 257, 2498-2503.
- 14. Harley J.P., Prescott L.M. 2005. Laboratory Exercises in Microbiology, 6th Edition. The McGraw Hill Higher Education, Boston, MA.
- 15. Hu M.Z.C., Norman J.M., Faison, N.B., Reeves, M. 1996. Biosorption of uranium by Pseudomonas aeruginosa strain CSU: characterization and 287- 288 comparison studies. Biotechnology and Bioengineering, 51, 237–247.
- 16. Irawati W., Patricia, Soraya Y., Baskoro A.H. 2012. A study on mercury-resistant bacteria isolated from a gold mine in Pongkor Village, Bogor, Indonesia. Hayati Journal of Bioscience, 19(4), 197-200.
- 17. Iyer A., Mody K., Jha B. 2005. Biosorption of heavy metals by a marine bacterium. Marine Pollution Bulletin, 50, 340–343.
- 18. Komala P.S., Helard, D., Delimas, D. 2012. Identification of dominant anaerobic microbes in rubber mill waste treatment with multi soil layering system. Journal of Environmental Engineering, Andalas University, 9 (1), 74-88 (in Indonesian).
- 19. Krisnayanti B.D., Anderson C.W.N., Utomo W.H., Feng X., Handayanto E., Muddarisna N., Ikram H., and Khususiah. 2012a. Assessment of environmental mercury discharge at a four-year-old artisanal gold mining area on Lombok Island, Indonesia. Journal of Environmental Monitoring, 14, 2598-2607.
- 20. Krisnayanti B.D., Arifin Z., Bustan, Sudirman, Yani A. 2012b. Mercury Concentration on Tailing and Water from One Year of ASGM at Lantung, Sumbawa, Indonesia. In: Environmental, Socio-economic, and Health Impacts of Artisanal and Small-Scale Minings. E. Handayanto, B.D. Krisnayanti and Suhartini (eds). UB Press, Malang, Indonesia, pp. 61-66.
- 21. Langley S., Beveridge T.J. 1999. Effect of O-side chine lipopolysaccharide chemistry on metal binding. Applied and Environmental Microbiology, 65, 489-498.
- 22. Lima de Silva A.A., Ribeiro de Carvalho M.A.L., de Souza S,A., Teixeira Dias P.M., da Silva Filho R.G., de Meirelles Saramago C.S., de Melo Bento C.A., Hofer E. 2012. Heavy metal tolerance (Cr, Ag, and Hg) in bacteria isolated from sewage. Brazilian Journal of Microbiology, 43(4), 1620-1631.
- 23. Madigan M.T., Martinco J.M., Dunlop P.V., Clark D.P. 2009. Brock Biology of Microorganisms. Twelfth Edition, 403-404.
- 24. Madigan T., Martinko J.M., 2006. Brock Biology of Microorganisms, 11th edpp.992,Prentice Hall, Upper Saddle River, NJ, USA.
- 25. Misra, T.K. 2000. Heavy Metals Bacterial Resistance. Encyclopedia of Microbiology 2nd Ed. 2: 618-627.
- 26. Nascimento A.M.A., Chartone-Souza E. 2003. Operon mer: Bacterial resistance to mercury and potential for bioremediation of contaminated environments. Genetics and Molecular Research, 2(1), 92-101.
- 27. Nofiani R., Gusrizal. 2004. Narrow spectra mercury resistance bacteria from former illegal gold mining Mandor West Kalimantan. Jurnal Natur Indonesia, 6(2): 67-74. (in Indonesian).
- 28. Patra M., Sharma A. 2000. Mercury toxicity in plants. Botanical Review, 66, 379-422.
- 29. Pepi M., Carlo G., Emanuele B., Silvia F., Arianna L., Marcella R., Valentina N., Margherita V., Simone G., Giuseppe T., Paola R., Silvano E. 2011. Mercury-resistant bacterial strains Pseudomonas and Psychrobacter spp. isolated from sediments of Orbetello Lagoon (Italy) and their possible use in bioremediation processes. Int. Biodeterior. Biodegradation, 65, 85-91.
- 30. Rasmussen L.D., Zawasdsky C., Binnerup S.J., Oregaard G., Soresnsen S.J., Kroer N. 2008. Cultivation of hard-to-culture subsurface mercury-resistant bacteria and discovery of new merA gene sequence. Applied and Environmental Microbiology, 74(12), 3795-3803.
- 31. Segers P., Vancanneyt L.M., Pot B., Torck U., Hoste B., Dewettinck D., Falsen E., Kersters K., De Vos P. 1994. Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Busing, Doll, and Freytag 1953 in Brevundimonas gen. nov.as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., respectively. International Journal of Systematic Bacteriology, 44 (3), 499-510.
- 32. Subowo M., Widodo S., Nugraha A. 2007. Status and distribution of Pb, Cd, and pesticides on intensified rice fields on the edge of the highway. Proceedings of Chemistry and Soil Biotechnology, Puslittanak, Bogor (in Indonesian).
- 33. Telmer K. 2007. Mercury and small scale gold mining–magnitude and challenges worldwide. GEF/UNDP/UNIDO Global Mercury Project.
- 34. Veiga M.M., Maxson P.A., Hylander L.D. 2006. Origin and consumption of mercury in small-scale gold mining. Journal of Cleaner Production, 14, 436-447.
- 35. Vetriani C., Speck M.D., Ellor S.V., Lutz R.A., Starovoytov V. 2004. Thermovibrio ammonificans sp. nov., a thermophilic, chemolithotrophic, nitrate-ammonifying bacterium from deep-sea hydrothermal vents. International Journal of Systematic and Evolutionary Microbiology, 54, 175–181.
- 36. Zeroual Y., Moutaouakkil A., Dzairi F.Z., Talbi M., Chung P.U., Lee K., Blaghen M. 2003. Purification and characterization of cytosolic mercuric reductase from Klebsiella pneumonia. Annals of Microbiology, 53, 149-160.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f0e7f99-62cc-4166-abb2-7e6a603537e7