PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Following the M7.0 earthquake that struck the Greek island of Samos and Turkey’s western coast, causing extensive damage and casualties, we combined existing knowledge geodatabases concerning historical seismicity and rupture zones with seismological and geodetic measurements as well as with modelling and in situ observations, to provide an assessment of rapid response to the seismic event. In this paper, we demonstrate that in the frame of the gradual provision of information from the individual scientifc disciplines, taking into account their respective potential and limitations, a multidisciplinary approach is able to address more efciently rapid response issues in order to allow efective preliminary interpretation of the earthquake activity, even within the frst 24 h of the event. It focuses on the assessment of the timely provision of information by each discipline, evaluating the access to primary data sources as well as the maturity of the techniques in terms of accuracy and rapid data processing. Within a period of less than a week, several constraints were partially compensated for, allowing the delivery of more robust results and interpretation. The study highlights the readiness level of the various domains that has been signifcantly improved over the past years, including rapid seismological solutions, systematic availability of free and open Earth Observation data and on-demand online processing through dedicated platforms. Their combination with routinely applied inversion modelling and timely in situ observation is leading to improved operational response levels.
Czasopismo
Rocznik
Strony
1025--1048
Opis fizyczny
Bibliogr. 73 poz.
Twórcy
  • Department of Physical and Environmental Geography, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece
  • Department of Geophysics, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece
  • Department of Geophysics, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece
  • Department of Geophysics, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece
  • Department of Physical and Environmental Geography, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece
  • Department of Cadaster, Photogrammetry and Cartography, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece
  • Department of Physical and Environmental Geography, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece
  • Department of Geophysics, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece
autor
  • Institute of Geodesy and Geoinformatics, Wroclaw University of Environmental and Life Sciences, 50-357 Wroclaw, Poland
  • Ephorate of Antiquities of Cyclades, Ministry of Culture and Sports, 10555 Athens, Greece
  • Department of Physical and Environmental Geography, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece
  • Department of Geophysics, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece
  • Department of Geology, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece
Bibliografia
  • 1. Akyol N, Zhu L, Mitchell BJ, Sözbilir H, Kekovalı K (2006) Crustal structure and local seismicity in western Anatolia. Geophys J Int 166(3):1259–1269. https://doi.org/10.1111/j.1365-246X.2006.03053.x
  • 2. Alkan RM, Erol S, Ozulu IM, Ilci V (2020) Accuracy comparison of post-processed PPP and real-time absolute positioning techniques. Geomat Nat Haz Risk 11(1):178–190. https://doi.org/10.1080/19475705.2020.1714752
  • 3. Aschbacher J, Milagro-Perez MP (2012) The European Earth monitoring (GMES) programme: status and perspectives. Remote Sens Environ 120:3–8
  • 4. Aslan G, Foumelis M, Raucoules D, De Michele M, Bernardie S, Cakir Z (2020) Landslide inventory mapping and monitoring using persistent scatterer interferometry (PSI) technique in the French alps. Remote Sens 12(8):1305. https://doi.org/10.3390/rs12081305
  • 5. Bacques G, de Michele M, Foumelis M, Raucoules D, Lemoine A, Briole P (2020) Displacement field of the Mw7.5 Sulawesi earthquake from Copernicus Sentinel 1–2 offset tracking and modeling: Strike slip motion on two sub-parallel faults branches could explain the tsunami genesis. Nat Sci Rep 10:9103. https://doi.org/10.1038/s41598-020-66032-7
  • 6. Bally P (ed) (2013) Satellite earth observation for geohazard risk management: the Santorini conference - Santorini, Greece, 21–23 May 2012 ESA Publication STM-282. https://doi.org/10.5270/esa-geo-hzrd-2012, http://esamultimedia.esa.int/docs/EarthObservation/Geohazards/esa-geo-hzrd-2012.pdf
  • 7. Boore DM (2009) Comparing Stochastic point-source and finite-source ground-motion simulations: SMSIM and EXSIM. Bull Seism Soc Am 99(6):3202–3216
  • 8. Boore DM, Stewart JP, Seyhan E, Atkinson GM (2014) NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthq Spectra 30(3):1057–1085
  • 9. Caputo R, Chatzipetros A, Pavlides S, Sboras S (2012) The Greek database of seismogenic sources (GreDaSS): state-of-the-art for northern Greece. Ann Geophys 55(5):859–894
  • 10. Casu F et al (2014) SBAS-DInSAR parallel processing for deformation time-series computation. IEEE J Sel Top Appl Earth Observ Remote Sens 7(8):3285–3296. https://doi.org/10.1109/JSTARS.2014.2322671
  • 11. Chatzipetros A, Kiratzi A, Sboras S, Zouros N, Pavlides S (2013) Active faulting in the north eastern Aegean Sea Islands. Tectonophysics 597–598:106–122
  • 12. Chatzipetros A, Pavlidis S, Zouros N (2020) Preliminary report for the Samos earthquake (30/10/2020), Aristotle University of Thessaloniki (AUTh), Department of Gelogy, p 5 (in Greek)
  • 13. Cigna F, Tapete D (2020) Present-day land subsidence rates, surface faulting hazard and risk in Mexico City with 2014–2020 Sentinel-1 IW InSAR. Remote Sens Environ 253:112161. https://doi.org/10.1016/j.rse.2020.112161
  • 14. Cornou C, Aubert C, Audin L, Ampuero J-P, Baize S, Brenguier F, Causse M, Chlieh M, Combey A, Delouis B, Deschamps A, Ferry M, Foumelis M et al (2020) Rapid response to the Mw 4.9 earthquake of November 11, 2019 in Le Teil, Lower Rhône Valley, France. Comptes Rendus Géosciences. https://doi.org/10.31219/osf.io/3afs5
  • 15. Daout S, Steinberg A, Isken MP, Heimann S, Sudhaus H (2020) Illuminating the spatio-temporal evolution of the 2008–2009 Qaidam earthquake sequence with the joint use of InSAR time series and teleseismic data. Remote Sens 12:2850. https://doi.org/10.3390/rs12172850
  • 16. Delgado Blasco JM, Foumelis M, Stewart C, Hooper A (2019) Measuring Urban Subsidence of Broader Rome (Italy) by Sentinel-1 SNAP-StaMPS persistent scatterer interferometry. Remote Sens 11(2):129. https://doi.org/10.3390/rs11020129
  • 17. ESA Sentinel Online (2020) Copernicus Sentinel-1 supports timely interpretation of Southern Europe’s earthquake, Sentinel Online Article, European Space Agency, 12 November 2020. https://sentinel.esa.int/web/sentinel/news/success-stories/
  • 18. Fayjaloun R, Gehl P, Auclair S, Boulahya F, Guérin-Marthe S, Roullé A (2020) Integrating strong-motion recordings and twitter data for a rapid shakemap of macroseismic intensity. Int J Disaster Risk Reduct 101927:2212–4209. https://doi.org/10.1016/j.ijdrr.2020.101927
  • 19. Foumelis M, Papadopoulou T, Bally P, Pacini F, Provost P, Patruno J (2019) Monitoring geohazards using on-demand and systematic services on ESA’s geohazards exploitation platform IEEE international geoscience and remote sensing symposium (IGARSS 2019) Yokohama Japan 28 July–2 August. https://doi.org/10.1109/IGARSS.2019.8898304
  • 20. Ganas, A, Tsironi, V, Kollia, E, Delagas, M, Tsimi, C, Oikonomou, A (2018) Recent upgrades of the NOA database of active faults in Greece (NOAFAULTs). In: 19th general assembly of WEGENER, September 2018, Grenoble, p 219400. https://doi.org/10.5281/zenodo.3483136
  • 21. Ganas A, Elias P, Briole P, Tsironi V, Valkaniotis S, Escartin J, Karasante I, Efstathiou E (2020) Fault responsible for Samos earthquake identified. Temblor. https://doi.org/10.32858/temblor.134
  • 22. Geohazards Exploitation Platform (GEP) (2020) Access to Publicly available data, products and more. https://geohazards-tep.eu/geobrowser/?id=globalapp#!&context=Community%2FSharedJobs. Accessed 31 Dec 2020
  • 23. Gisinger C, Suchandt S, Breit H, Balss U, Lachaise M, Fritz T, Eineder M, Miranda N (2019) Towards operational SAR imaging geodesy: an extended time annotation dataset for sentinel-1 image products. In: Presented at the “Very High-resolution Radar & Optical Data Assessment (VH-RODA)” workshop, 18–22 November 2019, Frascati, Italy
  • 24. Grinter T, Janssen V (2012) Post-processed precise point positioning: a viable alternative? In: Proceedings of the 17th Association of Public Authority Surveyors Conference (APAS2012), Wollongong, New South Wales, Australia, Mar 19–21, pp 83–92
  • 25. Hanks TC, Kanamori H (1979) A moment magnitude scale. J. Geophys. Res. Solid Earth 84(B5):2348–2350. https://doi.org/10.1029/JB084iB05p02348
  • 26. Heimann S, Isken M, Kühn D, Sudhaus H, Steinberg A, Vasyura-Bathke H, Daout S, Cesca S, Dahm T (2018) Grond: a probabilistic earthquake source inversion framework. V. 1.0. GFZ Data Serv. https://doi.org/10.5880/GFZ.2.1.2018.003
  • 27. Isken M, Sudhaus H, Heimann S, Steinberg A, Daout S, Vasyura-Bathke H (2017) Kite: software for rapid earthquake source optimisation from InSAR surface displacement. GFZ Data Serv. https://doi.org/10.5880/GFZ.2.1.2017.002
  • 28. Jónsson S, Zebker H, Segall P, Amelung F (2002) Fault slip distribution of the 1999 Mw 71 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements. Bull. Seism. Soc. Am. 92(4):1377–1389
  • 29. Kalogeras I, Melis NS, Kalligeris N (2020) The earthquake of October 30th, 2020 at Samos, Eastern Aegean Sea, Greece. Preliminary Report, National Observatory of Athens, Institute of Geodynamics. https://accelnet.gein.noa.gr/2020/11/09/the-earthquake-of-october-30th-2020-at-samos-eastern-aegean-sea-greece-preliminary-report
  • 30. Karakostas VG, Papadimitriou EE, Karakaisis GF, Papazachos CB, Scordilis EM, Vargemezis G, Aidona E (2003) The 2001 Skyros, northern Aegean, Greece, Earthquake sequence: Off fault aftershocks, tectonic implications, and seismicity triggering. Geophys Res Lett 30(1):1012. https://doi.org/10.1029/2002GL015814
  • 31. Karakostas V, Karagianni E, Paradisopoulou P (2012) Space–time analysis, faulting and triggering of the 2010 earthquake doublet in western Corinth Gulf. Nat Haz 63:1181–1202
  • 32. Karakostas V, Kostoglou A, Chorozoglou D, Papadimitriou E (2020) Relocation of the 2018 Zakynthos, Greece, aftershock sequence: spatiotemporal analysis deciphering mechanism diversity and aftershock statistics. Acta Geophys 68:1263–1294
  • 33. Karakostas VG, Tan O, Kostoglou A, Papadimitriou EE, Bonatis P (2021). Seismotectonic implications of the 2020 Samos, Greece, Mw7.0 mainshock based on high - resolution aftershock relocation and source slip model. Acta Geophys (this issue)
  • 34. Kiratzi A, Özacar AA, Papazachos C, Pinar A (eds) (2020) Regional tectonics and seismic source of the M7.0 Samos earthquake, special volume on the Samos M7.0 2020 earthquake, Chapter 1, 46pp
  • 35. Kkallas C, Papazachos CB, Margaris BN, Boore D, Ventouzi C, Skarlatoudis A (2018) Stochastic strong ground motion simulation of the Southern Aegean Sea Benioff zone intermediate-depth earthquakesstochastic strong ground motion simulation of the Southern Aegean sea intermediate-depth earthquakes. Bull Seismol Soc Am 108(2):946–965
  • 36. Klein FW (2000) User’s guide to HYPOINVERSE-2000, a Fortran program to solve earthquake locations and magnitudes. U. S. Geol. Surv. Open File Report, 02–171, Version 1.0
  • 37. Le Cozannet G, Kervyn M, Russo S, Ifejika Speranza C, Ferrier P, Foumelis M, Lopez T, Modaressi H (2020) Space-based Earth observations for disaster risk management. Surv Geophys. https://doi.org/10.1007/s10712-020-09586-5
  • 38. Lekkas E et al (2020) The October 30, 2020, Mw 6.9 Samos (Greece) earthquake. Newsletter of Environmental, Disaster, and Crises Management Strategies, Issue No. 21, November 2020. https://edcm.edu.gr/en/newsletter/newsletter-21-the-october-30-2020-mw-69samosgreece-earthquake
  • 39. Lemoine A, Bertil D, Roullé A, Briole P, Foumelis M, Raucoules D, de Michele M (2020) The volcano tectonic crisis of 2018 east of Mayotte, Comoros islands. Geophys J Int. https://doi.org/10.1093/gji/ggaa273
  • 40. Leptokaropoulos KM, Karakostas VG, Papadimitriou EE, Adamaki AK, Tan O, İnan S (2013) A homogeneous earthquake catalogue compilation for western turkey and magnitude of completeness determination. Bull Seismol Soc Am 103(5):2739–2751
  • 41. Manunta M et al (2019) The parallel SBAS approach for Sentinel-1 interferometric wide swath deformation time-series generation: algorithm description and products quality assessment. IEEE Trans Geosci Remote Sens 57(9):6259–6281. https://doi.org/10.1109/TGRS.2019.2904912
  • 42. Marchetti PG, Rivolta G, D’Elia S, Farres J, Mason G, Gobron N (2012) A model for the scientific exploitation of earth observation missions: the ESA research and service support. IEEE Geosci Remote Sens 162:10–18
  • 43. Michetti AM, Esposito E, Guerrieri L, Porfido S, Serva L, Tatevossian R, Vittori E, Audemard F, Azuma T, Clague J, Comerci V, Gürpinar A, McCaplin J, Mohammadioun B, Mörner NA, Ota Y, Roghozin E (2015) Environmental SeismicIntensity scale—ESI 2007 (English). In: Guerrieri L (ed) Earthquake environmental effects for seismic hazard assessment: the ESI intensity scale and the EEE catalogue, Mem. Descr. Carta Geol. D’It. XCVII (2015), pp 11–20
  • 44. Morishita Y, Lazecky M, Wright TJ, Weiss JR, Elliott JR (2020) LiCSBAS: an open-source InSAR time series analysis package integrated with the LiCSAR automated Sentinel-1 InSAR processor. Remote Sens 12:424
  • 45. Motazedian D, Atkinson GM (2005) Stochastic finite-fault modeling based on a dynamic corner frequency. Bull Seismol Soc Am 95(3):995–1010. https://doi.org/10.1785/0120030207
  • 46. Mountrakis D, Kilias A, Vavliakis E, Psilovikos A, Thomaidou E (2003) Neotectonic map of Samos Island (Aegean Sea, Greece): implication of geographical information systems in the geological mapping. In: Proceedings of the 4th European Congress on regional geoscientific cartography and information systems, Bologna, Italy, 11–13
  • 47. Mountrakis D, Kilias A, Vavliakis E, Psilovikos A, Karakaisis G, Papazachos C, Thomaidou E, Seitanidis G (2006) Neotectonic map of Greece, Samos sheet (1:75,000 scale), Earthquake Planning and Protection Organization of Greece
  • 48. Natural Resources Canada (2019) Precise point positioning. https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php. Accessed 2 Aug 2019
  • 49. Nocquet JM (2012) Present-day kinematics of the Mediterranean: a comprehensive overview of GPS results. Tectonophysics 579:220–242
  • 50. Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seism Soc Am 75(4):1135–1154
  • 51. Okuwaki R (2020) rokuwaki/2020Greece: preliminary tele-seismic finite-fault models of the 2020 Greece earthquake. https://github.com/rokuwaki/2020Greece
  • 52. Panagiotopoulos DG, Papazachos BC (1985) Travel times of Pn–waves in the Aegean and surrounding area. Geophys J R Astron Soc 80:165–176
  • 53. Papadimitriou P, Kapetanidis V, Karakonstantis A, Spingos I, Kassaras I, Sakkas V, Kouskouna V, Karatzetzou A, Pavlou K, Kaviris G, Voulgaris N (2020) First results on the Mw = 6.9 Samos earthquake of October 2020. Bull Geol Soc Greece 56(1):251–279. https://doi.org/10.12681/bgsg.25359
  • 54. Papadimitriou P, Kapetanidis V, Karakostantis A, Spingos I, Pavlou K, Kaviris G, Kasaras I, Sakkas V, Voulgaris N (2021) The 25 October 2018 Zakynthos (Greece) earthquake: seismic activity at the transition between a transform fault and a subduction zone. Geophys J Int 225:15–36
  • 55. Papageorgiou E, Foumelis M, Trasatti E, Ventura G, Raucoules D, Mouratidis A (2019) Multi-sensor SAR geodetic imaging and modelling of Santorini volcano post-unrest response. Remote Sens 11:259. https://doi.org/10.3390/rs11030259
  • 56. Papazachos CB (2019) Deep structure and active tectonics of the South Aegean volcanic arc. Elements 15(3):153–158
  • 57. Papazachos CB, Kiratzi AA (1996) A detailed study of the active crustal deformation in the Aegean and surrounding area. Tectonophysics 253:129–153
  • 58. Papazachos BC, Papazachou C (2003) The earthquakes of Greece. Ziti publications, Thessaloniki, Greece, 286 pp. (in Greek)
  • 59. Papazachos BC, Comninakis PE, Karakaisis GF, Karakostas BG, Papaioannou CA, Papazachos CB, Scordilis EM (2000) A catalogue of earthquakes in Greece and surrounding area for the period 550BC-1999. Publ. Geoph. Lab., Univ. of Thessaloniki, 1, p 333
  • 60. Papazachos G, Papazachos C, Skarlatoudis A, Kkallas H, Lekkas E (2016) Modelling macroseismic observations for historical earthquakes: the cases of the M= 7.0, 1954 Sofades and M= 6.8, 1957 Velestino events (central Greece). J Seismol 20(1):151–165
  • 61. Peter H, Jäggi A, Fernández J, Escobar D, Ayuga F, Arnold D, Wermuth M, Hackel S, Otten M, Simons W, Visser P, Hugentobler U, Féménias P (2017) Sentinel-1A: first precise orbit determination results. Adv Space Res. https://doi.org/10.1016/j.asr.2017.05.034
  • 62. Sakellariou D, Tsampouraki-Kraounaki K (2019) Plio-quaternary extension and strike-slip tectonics in the Aegean. In: João C (ed) Transform plate boundaries and fracture zones. Springer, Duarte, pp 339–374
  • 63. Sboras S (2012) The Greek database of seismogenic sources: seismotectonic implications for North Greece. PhD Thesis, University of Ferrara, Ferrara, 252 pp
  • 64. Segou M (2020) What do we know 48 hours after the Samos earthquake? Temblor. https://doi.org/10.32858/temblor.132
  • 65. Serva L, Blumetti AM, Esposito E, Guerrieri L, Michetti AM, Okumura K, Porfido S, Reicherter K, Silva PG, Vittori E (2015) Earthquake environmental effects and seismic hazard assessment: the lessons of some recent large earthquakes. Mem Descr Carta Geol D’It XCVII 2015:5–8
  • 66. Tan O, Papadimitriou E, Pabuccu Z, Karakostas V, Yoruk A, Leptokaropoulos K (2014) A detailed analysis of microseismicity in Samos and Kusadasi (eastern Aegean Sea) areas (2014). Acta Geophys 62:1283–1309. https://doi.org/10.2478/s11600-013-0194-1
  • 67. Theodoropoulos D (1979) Samos Island, geological map 1:50,000 with explanations. Institute for Geological and Mining Research, Athens
  • 68. Vassilakis E, Foumelis M, Erkeki A, Kotsi E, Parcharidis Is, Lekkas E (2020) Post-event surface deformation of Amyntaio slide (Greece) by complementary analysis of Remotely Piloted Airborne System imagery and SAR interferometry. J Appl Geom. https://doi.org/10.1007/s12518-020-00347-y
  • 69. Wang R, Lorenzo MF, Roth F (2006) PSGRN/PSCMP: a new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Comput Geosci 32(4):527–541. https://doi.org/10.1016/j.cageo.2005.08.006
  • 70. Wegnüller U, Werner C, Strozzi T, Wiesmann A, Frey O, Santoro M (2016) Sentinel-1 support in the GAMMA Software. Proc Comput Sci 100:1305–1312. https://doi.org/10.1016/j.procs.2016.09.246
  • 71. Weidmann M, Solounias N, Drake RE, Curtis GH (1984) Neogene stratigraphy of the Eastern basin, Samos island, Greece. Geobios 17:477–490. https://doi.org/10.1016/S0016-6995(84)80020-0
  • 72. Yilmaz Y, Genç ŞC, Gürer F, Bozcu M, Yilmaz K, Karacik Z, Altunkaynak S, Elmas A (2000) When did the Western Anatolian Grabens begin to develop? Geol Soc Lond Spec Publ 173:353–384. https://doi.org/10.1144/GSL.SP.2000.173.01.17
  • 73. Zumberge JF, Heflin M, Jefferson DC, Watkins M, Webb F (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res. https://doi.org/10.1029/96JB03860
Uwagi
Korekta artykułu w tym numerze, na stronach: 1049-1050. Numer DOI korekty: 10.1007/s11600-021-00592-8
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f0e0909-e732-4487-b36f-a3327909a3cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.