PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical treatment by implementing a successive approximation method for fractional riccati and logistic differential equations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The fractional Riccati/Logistic differential equations (FRDE/FLDE) can be accurately solved numerically by using the approach presented in this study. In the provided questions, the fractional derivative is in the Caputo-Fabrizio (CF) sense. The suggested approach is the successive approximation technique (SAM). In this technique, we approximate the solution of the FRDE and FLDE with a finite-dimensional problem. A particular focus is examining the convergence analysis and estimating the upper bound on the error of the obtained approximate scheme. We offer an outcome on worldwide convergence of consecutive estimates. Also, to show the thoroughness of the method proposed, we computed the residual error function. Illustrative instances are given to prove the usefulness and validity of the suggested method.
Rocznik
Strony
5--17
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • Department of Mathematics, Faculty of Science, Islamic University of Madinah Medina, KSA
  • Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, KSA
Bibliografia
  • 1. Reid, W.T. (1972). Riccati Differential Equations, Mathematics in Science and Engineering. New York: Academic Press, 86.
  • 2. Dubois, F., & Saidi, A. (2000). Unconditionally stable scheme for Riccati equation. ESAIM Proceedings, 8, 39-52.
  • 3. Bahnasawi, A.A., El-Tawil, M.A., & Abdel-Naby, A. (2004). Solving Riccati differentia equation using ADM. Appl. Math. Comput., 157, 503-514.
  • 4. Tan, Y., & Abbasbandy, S. (2008). Homotopy analysis method for quadratic Riccati differential equation. Commun. Nonlin. Sci. Numer. Simul., 13(3), 539-546.
  • 5. Momani, S., & Shawagfeh, N. (2006). Decomposition method for solving fractional Riccati differential equations. App. Mathem. Comput., 182, 1083-1092.
  • 6. Pastijn, H. (2006). Chaotic Growth with the Logistic Model of P.-F. Verhulst, Understanding Complex Systems. In: The Logistic Map and the Route to Chaos: From the Beginnings to Modern Applications. Berlin-Heidelberg: Springer-Verlag.
  • 7. Alligood, K.T., Sauer, T.D., & Yorke, J.A. (1996). An Introduction to Dynamical Systems. Springer.
  • 8. Ausloos, M., & Dirickx (eds.) (2006). The Logistic Map and the Route to Chaos: From the Beginnings to Modern Applications. Berlin-Heidelberg: Springer-Verlag.
  • 9. Suansook, Y., &Paithoonwattanakij, K. (2009). Dynamic of logistic model at fractional order. IEEE International Symposium on Industrial Electronics.
  • 10. Nieto, J.J. (1997). An abstract monotone iterative technique. Nonlinear Anal., Theory, Methods and Appl., 28, 1923-1933.
  • 11. Browder, F. (1968). On the convergence of successive approximations for nonlinear functional equations. Indag. Math., 30, 27-35.
  • 12. Człapi´nski, T. (2014). Global convergence of successive approximations of the Darboux problem for partial functional differential equations with infinite delay. Opuscula Math., 34(2), 327-338.
  • 13. Abbas, S.A., & Benchoro, A.M. (2019). Global convergence of successive approximations for abstract semilinear differential equations. Pan. Amer. Math. J., 29(3), 17-31.
  • 14. Abbas, S.A., Benchoro, A.M., & Hmiddt, N. (2018). Successive approximations for the Darboux problem for implicit partial differential equations. Pan. Amer. Math. J., 28(3), 1-10.
  • 15. Adel, M., Khader, M.M., & Algelany, S. (2023). High-dimensional chaotic Lorenz system: Numerical treated using Changhee polynomials of the Appell type. Fractal and Fractional, 7(5), 1-16.
  • 16. Adel, M., Sweilam, N.H., Khader, M.M., Ahmed, S.M., Ahmad, H., & Botmart, T. (2022). Numerical simulation using the non-standard weighted average FDM for 2Dim variable-order Cable equation. Results in Physics, 39, 105682.
  • 17. Alkathiri, A.A., Jamshed, W., Devi, S.U.S., Eid, M.R., & Bouazizi, M.L. (2022). Galerkin finite element inspection of the thermal distribution of renewable solar energy in the presence of binary nanofluid in parabolic trough solar collector. Alexandria Engineering Journal, 61, 11063-11076.
  • 18. Ouni, M., Ladhar, L.M., Omri, M., & Jamshed W. (2022). Solar water-pump thermal analysis utilizing copper?gold/engine oil hybrid nanofluid flowing in parabolic trough solar collector: Thermal case study. Case Studies in Thermal Engineering, 30, 101756.
  • 19. Jamshed, W., Shahzad, F., Safdar, R., Sajid, T., Eid, M.R., & Nisar, K.S. (2024). Implementing renewable solar energy in the presence of Maxwell nanofluid in parabolic trough solar collector: a computational study.Waves in Random and Complex Media, 34(5), 4320-4351.
  • 20. Jamsheda, W., Devi, S.U.S., Safdar, R., Redouaned, F., Nisare, K.S., & Eid, M.R. (2021). Comprehensive analysis on copper-iron (II, III)/oxide-engine oil Casson nanofluid flowing and thermal features in parabolic trough solar collector. Journal of Taibah University for Science, 15(1), 619-636.
  • 21. Jamshed, W., Eid, M.R., Nasir, N.A.A.M., Nisar, K.S., Aziz, A., Shahzad, F., Saleel, A., & Shukla, A. (2021). Thermal examination of renewable solar energy in parabolic trough solar collector utilizing Maxwell nanofluid: A noble case study. Case Studies in Thermal Engineering, 27, 101258.
  • 22. Abdulhameed, M., Vieru, D., & Roslan, R. (2017). Magnetohydrodynamic electroosmotic flow of Maxwell fluids with Caputo-Fabrizio derivatives through circular tubes. Computers & Mathematics with Applications, 74(10), 2503-2519.
  • 23. Caputo, M., & Fabrizio, A. (2015). A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications, 1(2), 73-85.
  • 24. Mahdy, A.M.S. (2023). Stability, existence, and uniqueness for solving fractional glioblastoma multiforme using a Caputo-Fabrizio derivative. Mathematical Methods in the Applied Science, 15, 1-18.
  • 25. Aguilar, J.G. (2017). Space-time fractional diffusion equation using a derivative with nonsingular and regular kernel. Physica A: Statistical Mechanics and its Applications, 465, 562-572.
  • 26. Bachir, F.S., Abbas, S., Benbachir, M., & Benchohra, M. (2022). Successive approximations for Caputo-Fabrizio fractional differential equations. Tatra Mountains Mathematical Publications, 81, 1, 117-128.
  • 27. Martinez, H.Y., & Gomez-Aguilar, J.F. (2019). A new modified definition of Caputo-Fabrizio fractional-order derivatives and their applications to the multi-step homotopy analysis method. Journal of Computational and Applied Mathematics, 346, 247-260.
  • 28. Shaikh, A., Tassaddiq, A.S., Nisar, K., & Baleanu, D. (2019). Analysis of differentia equations involving the Caputo-Fabrizio fractional operator and its applications to reaction-diffusion equations. Adv. Difference Equ., 178, 1-14.
  • 29. Khader, M.M., Sweilam, N.H., & Kharrat, B.N. (2020). Numerical simulation for solving fractional Riccati and Logistic differential equations as a difference equation. Applications and Applied Mathematics: An Inter. Journal, 15(1), 655-665.
  • 30. Losada J., & Nieto, J.J. (2021). Fractional integral associated to fractional derivatives with nonsingular kernels. Progr. Fract. Differ. Appl., 7(3), 137-143.
  • 31. Parand, K., & Delkhosh, M. (2016). Operational matrices to solve nonlinear Volterra-Fredholm IDEs of multi-arbitrary order. Gazi University J. of Science, 29(4), 895-907.
  • 32. El-Sayed, A.M.A., El-Mesiry, A.E.M., & El-Saka, H.A.A. (2007). On the fractional-order Logistic equation. Applied Mathematics Letters, 20(7), 817-823.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f0996dc-60c9-4804-bd07-9589ffafaea5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.