PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Interpolated-DFT-Based Fast and Accurate Amplitude and Phase Estimation for the Control of Power

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Quality of energy produced in renewable energy systems has to be at the high level specified by respective standards and directives. One of the most important factors affecting quality is the estimation accuracy of grid signal parameters. This paper presents a method of a very fast and accurate amplitude and phase grid signal estimation using the Fast Fourier Transform procedure and maximum decay side-lobes windows. The most important features of the method are elimination of the impact associated with the conjugate’s component on the results and its straightforward implementation. Moreover, the measurement time is very short ‒ even far less than one period of the grid signal. The influence of harmonics on the results is reduced by using a bandpass pre-filter. Even using a 40 dB FIR pre-filter for the grid signal with THD ≈ 38%, SNR ≈ 53 dB and a 20‒30% slow decay exponential drift the maximum estimation errors in a real-time DSP system for 512 samples are approximately 1% for the amplitude and approximately 8.5・10‒2 rad for the phase, respectively. The errors are smaller by several orders of magnitude with using more accurate pre-filters.
Rocznik
Strony
13--26
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Wrocław University of Technology, Chair of Electronic and Photonic Metrology, B. Prusa 53/55, 50-317 Wrocław, Poland
autor
  • Wrocław University of Technology, Chair of Electronic and Photonic Metrology, B. Prusa 53/55, 50-317 Wrocław, Poland
Bibliografia
  • [1] Kabir, M.N., Mishra, Y., Ledwich, G., Dong, Z.Y., Wong, K.P. (2014). Coordinated Control of Grid-Connected Photovoltaic Reactive Power and Battery Energy Storage Systems to Improve the Voltage Profile of a Residential Distribution Feeder. IEEE Trans. on Ind. Inf., 10(2), 967‒977.
  • [2] Rahim, N.A., Selvaraj, J., Solangi, K.H. (2013). Energy policy to promote photovoltaic generation. Renew. & Sust. Energy Rev., 25, 44‒58.
  • [3] Characteristics of the utility interface for photovoltaic (pv) systems. IEC 61727-2002.
  • [4] Measurement and assessment of power quality characteristics of grid connected wind turbines. IEC 61400-21.
  • [5] Eren, S., Pahlevaninezahad, M., Bakhshai, A., Jain, P.K. (2013). Composite Nonlinear Feedback Control and Stability Analysis of a Grid-Connected Voltage Source Inverter With LCL Filter. IEEE Trans. on Ind. Elec., 60(11), 5059‒5074.
  • [6] Kanieski, J., Cardoso, R., Pinheiro, H., Grundling, H.A. (2013). Kalman Filter-Based Control System for Power Quality Conditioning Devices. IEEE Trans. on Ind. Elec., 60(11), 5214‒5227.
  • [7] Vazquez, S., Sanchez, J.A., Reyes, M.R., Leon, J.I., Carrasco, J.M. (2014). Adaptive Vectorial Filter for Grid Synchronization of Power Converters Under Unbalanced and/or Distorted Grid Conditions. IEEE Trans. on Ind. Elec., 61(3), 1355‒1367.
  • [8] Shahbazi, M., Poure, P., Saadate, S., Zolghadri, M.R. (2013). FPGA-Based Fast Detection With Reduced Sensor Count for a Fault-Tolerant Three-Phase Converter. IEEE Trans. on Ind. Inf., 9(3), 1343‒1350.
  • [9] Feola, L., Langella, R., Testa, A. (2013). On the Effects of Unbalances, Harmonics and Interharmonics on PLL Systems. IEEE Trans. on Instr. and Meas., 62(9), 2399‒2409.
  • [10] Yang, Y., Zhou, K., Cheng, M. (2013). Phase Compensation Resonant Controller for PWM Converters. IEEE Trans. on Ind. Inf., 9(2), 957‒964.
  • [11] Borkowski, J., Kania, D., Mroczka, J. (2014). Interpolated DFT-Based Fast and Accurate Frequency Estimation for the Control of Power. IEEE Trans. on Ind. Elec., 61(12), 7026‒7034.
  • [12] Štremfelj, J., Agrež, D. (2013). Nonparametric estimation of power quantities in the frequency domain using Rife- Vincent windows. IEEE Trans. on Instr. and Meas., 62(8), 2171‒2184.
  • [13] Belega, D., Petri, D., Dallet, D. (2014). Frequency estimation of a sinusoidal signal via a three-point interpolated DFT method with image component interference rejection capability. Digital Signal Processing, 24(1), 162‒169.
  • [14] Chen, C.I. (2013). A Phasor Estimator for Synchronization Between Power Grid and Distributed Generation System. IEEE Trans. on Ind. Elec., 60(8), 3248‒3255.
  • [15] Jain, S.K., Singh, S.N. (2013). Fast Harmonic Estimation of Stationary and Time-Varying Signals Using EAAWNN. IEEE Trans. on Instr. and Meas., 62(2), 335‒343.
  • [16] Huang, X., Guo, Y.J. (2010). MSE lower bounds for phase estimation based on overlapped Gaussian distribution. Intern. Symp. on Commun. and Inform. Techn.
  • [17] Fu, H., Kam, P.Y. (2013). Phase-Based, Time-Domain Estimation of the Frequency and Phase of a Single Sinusoid in AWGN - The role and Applications of the Additive Observation Phase Noise Model. IEEE Trans. on. Inf. Theory, 59(5), 3175‒3188.
  • [18] Yamada, T. (2013). High-Accuracy Estimations of Frequency, Amplitude, and Phase With a Modified DFT for Asynchronous Sampling. IEEE Trans. on Instr. and Meas., 62(6), 1428‒1435.
  • [19] Dash, P.K., Hasan, S. (2011). A Fast Recursive Algorithm for the Estimation of Frequency, Amplitude, and Phase of Noisy Sinusoid. IEEE Trans. on Ind. Elec., 58(10), 4847‒4856.
  • [20] Belega, D., Macii, D., Petri, D. (2014). Fast Synchrophasor Estimation by Means of Frequency-Domain and Time- Domain Algorithms. IEEE Trans. on Instr. and Meas., 63(2), 388‒401.
  • [21] Rife, D.C., Vincent, G.A. (1970). Use of the Discrete Fourier Transform in the Measurement of Frequencies and Levels of Tones. Bell Syst. Tech. Journal, 49, 197‒228.
  • [22] Nuttall, A.H. (1981). Some Windows with Very Good Sidelobe Behavior. IEEE Trans. on Acous., Sp. and Sig. Proc., 29(1), 84-91.
  • [23] Belega, D., Dallet, D. (2008). Frequency estimation via weighted multipoint interpolated DFT. IET Scien., Meas. and Tech., 2(1), 1‒8.
  • [24] Rife, D.C., Boorstyn, R.R. (1974). Single-Tone Parameter Estimation from Discrete-Time Observations. IEEE Trans. on Inform. Theory, 20(5).
  • [25] IEEE Standard for Synchrophasors for Power Systems. IEEE Std. C37.118-2005.
  • [26] Chen, C.I. (2013). A Phasor Estimator for Synchronization Between Power Grid and Distributed Generation System. IEEE Trans. on Ind. Elec., 60(8), 3248‒3255.
  • [27] Voltage characteristics of electricity supplied by public electricity networks. EN 50160:2010.
  • [28] Alhaj, H.M.M., Nor, N.M., Asirvadam, V.S., Abdullah, M.F. (2014). Power system harmonics estimation using LMS, LMF and LMS/LMF. Intern. Conf. on Intel. and Adv. Syst.
  • [29] Subudhi, B., Ray, P.K. (2009). Estimation of Power System Harmonics Using Hybrid RLS-Adaline and KFAdaline Algorithms. IEEE Region 10 Conference TENCON.
  • [30] Alhaj, H.M.M., Nor, N.M., Asirvadam, V.S., Abdullah, M.F. (2013). Power System Harmonics Estimation using Sliding Window Based LMS. IEEE Intern. Conf. on Signal and Image Proc. Applications.
  • [31] Ray, P.K., Subudhi, B. (2012). Ensemble-Kalman-Filter-Based Power System Harmonic Estimation. IEEE Trans. on Instr. and Meas., 61(12), 3216‒3224.
  • [32] Borkowski, J., Kania, D., Mroczka, J. (2014). Influence of A/D Quantization in Interpolated-DFT-Based System of Power Control with Small Delay. Metrol. Meas. Syst., 21(3), 423‒432.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f0610be-546a-483c-8ea8-ffc58902f1db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.