PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-scale envelope-based analysis of geomagnetic anomaly field

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper introduces a news processing method for geomagnetic anomaly field data: envelope mode magnetic field, which can weaken the influence caused by geomagnetic polarity reversal during rock magnetization, reflect the magnetic change of crustal rocks, and locate the crustal structures. According to the characteristics of the magnetic anomaly field, the envelope mode magnetic field is calculated in three different ways: full anomaly envelope, positive anomaly envelope, and negative anomaly envelope. The simulation test of seismic signal and magnetic anomaly model has achieved good results. During the calculation of the real-world data, because the magnetization directions of the geomagnetic field in the southern and northern hemispheres are opposite, we use the full envelope or positive envelope method for the northern hemisphere and the negative envelope method for the southern hemisphere. The experiment using EMAG2 global satellite magnetic anomaly data demonstrates that the strong anomaly of the envelope mode magnetic field is consistent with the spatial distribution of cratonic tectonic units, confirming its application effect.
Czasopismo
Rocznik
Strony
65--78
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
  • School of Earth Sciences, Zhejiang University, Hangzhou, China
autor
  • Ocean College, Zhejiang University, Zhoushan, China
autor
  • School of Earth Sciences, Zhejiang University, Hangzhou, China
Bibliografia
  • 1. Ansari AH, Alamdar K (2011) A new edge detection method based on the analytic signal of tilt angle (ASTA) for magnetic and gravity anomalies. Iran J Sci Technol 35:81–88
  • 2. Chen GX, Chen SC, Yang WC (2019) Reflection waveform inversion based on full-band seismic data reconstruction for salt structure inversion. Geophys J Int 220:235–247
  • 3. Chen G, Yang W, Chen S, Liu Y, Zhiwei G (2020) Application of envelope in salt structure velocity building: from objective function construction to the Full-Band Seismic data reconstruction. IEEE Trans Geosci Remote Sens 58(9):6594–6608. https://doi.org/10.1109/TGRS.2020.2978125
  • 4. Chen GX, Yang WC, Wang H, Zhou H, Huang X (2022a) Elastic full waveform inversion based on full-band seismic data reconstructed by dual deconvolution. IEEE Geosci Remote Sens Lett 19:1–5. https://doi.org/10.1109/LGRS.2022.3178915
  • 5. Chen GX, Yang WC, Liu Y, Wang H, Huang X (2022b) Salt structure elastic full waveform inversion based on the multi-scale signed envelope. IEEE Trans Geosci Remote Sens 60:1–12. https://doi.org/10.1109/TGRS.2022.3166028
  • 6. Chen GX, Yang WC, Liu YN, Luo JR, Jing H (2022c) Envelope-based sparse constrained deconvolution for velocity model building. IEEE Trans Geosci Remote Sens 60:1–13. https://doi.org/10.1109/TGRS.2021.3063514
  • 7. Chulliat A, Macmillan S, Alken P, Beggan C, Nair M, Hamilton B, Woods A, Ridley V, Maus S, Thomson A (2015) The US/UK world magnetic model for 2015–2020: technical report. NOAA Natl Geophys Data Cent Boulder CO. https://doi.org/10.7289/V5TB14V7
  • 8. Cooper GRJ (2009) Balancing images of potential-field data. Geophysics 74(3):L17–L20
  • 9. Cooper GRJ (2014a) Reducing the dependence of the analytic signal amplitude of aeromagnetic data on the source vector direction. Geophysics 79(4):J55–J60
  • 10. Cooper GRJ (2014b) The automatic determination of the location and depth of contacts and dykes from aeromagnetic data. Pure Appl Geophys 171(9):2417–2423
  • 11. Elmallah ES (2011) Regional climate interaction with the solar and geomagnetic activities. Res J Environ Sci 5(4):316–328
  • 12. Fu LH, Yang WC (2018) Depth evaluation of magnetic sources by spectral moment analysis. Chin J Geophys Chin Ed 61(7):3044–3054
  • 13. Gary M, Tapan M, Jack D (2009) Rock physics handbook. Cambridge Univ. Press, UK
  • 14. Hood L, Schimanke S, Spangehl T, Bal S, Cubasch U (2013) The surface climate response to 11-Yr solar forcing during northern winter: observational analyses and comparisons with GCM simulations. J Clim 26(19):7489–7506
  • 15. Judd WR, Roy RE (1981) Physical Properties of rocks and minerals. McGran-Hill
  • 16. Pham LT, Oksum E, Do TD, Le-Huy M (2018) New method for edges detection of magnetic sources using logistic function. Geofizichesky Zhurnal 40(6):127–135
  • 17. Pham LT, Oksum E, Do TD, Le-Huy M, Vu MD, Nguyen VD (2019) LAS: a combination of the analytic signal amplitude and the generalised logistic function as a novel edge enhancement of magnetic data. Contrib Geophys Geodesy 49(4):425–440
  • 18. Roest WR, Verhoef J, Pilkington M (1992) Magnetic interpretation using the 3-D analytic signal. Geophysics 57(1):116–125
  • 19. Rogers JW (2004) Continents and supercontinents. Oxford Univ. Press, Oxford
  • 20. Shen W (2007) Nonlinear dynamic study on geomagnetic polarity reversal and cretaceous normal superchron. Acta Geologica Sinica-Engl Ed 81(6):1097–1102
  • 21. Shen W, Fang C, Zhang D (2009) Fractal and chaos research of geomagnetic polarity reversal. Earth Sci Front 16(5):201–206
  • 22. Sobolev SV, Babeyko AY (1994) Modeling of mineralogical composition, density and elastic wave velocities in anhydrous magmatic rocks. Surv Geophys 15:515–544
  • 23. Telford WM, Geldart LP, Sheriff RE, Keys DA (1990) Applied geophysics, 2nd edn. Cambridge Univ. Press
  • 24. Turcotte D, Schubert G (2001) Geodynamics. Cambridge Univ. Press, Cambridge
  • 25. Yang WC (1997) Theories and methods of geophysical inversion. Geological Press, Beijing
  • 26. Yang WC, Wang JL, Zhong HZ, Chen B (2012) Analysis of regional magnetic field and source structure in Tarim Basin (in Chinese). Chin J Geophys Chin Ed 55(4):1278–1287
  • 27. Yao LUO, Ming WANG, Feng LUO, Song TIAN (2011) Direct analytic signal interpretation of potential field data using 2-D Hilbert transform. Chin J Geophys 54(4):551–559. https://doi.org/10.1002/cjg2.1637
  • 28. Zhang D, Yan M, Song C, Zhang W, Fang X, Li B (2021) Frequent polarity reversals in the cretaceous normal superchron. Geophys Res Lett. https://doi.org/10.1029/2020GL091501
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f011bfc-73d0-42e1-9c0f-9ea6569c8721
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.