PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of sampling configurations of acoustic Doppler velocimeter (ADV) on turbulence measurements around large roughness elements

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this experimental study, the effects of sampling strategies on the acoustic Doppler velocimeter (ADV) measurements in clear water flow around a boulder, including the near-bed and boulder’s wake regions, were investigated. This study found that adjusting sampling volume heights and frequencies noticeably influenced the mean and turbulent flow characteristics, especially measurements of time-averaged velocity and the Reynolds shear stress near the bed. Increasing sampling frequency and reducing sampling volume size improve ADV quality parameters while it increased the noise variances. Generally, the recorded mean and turbulent flow parameters with the smallest sampling volume and the highest frequency showed the least sensitivity to applying a signal correlation filter. Assuming the normality of true velocity data, this study found that by keeping at least 70% of data, average signal correlation thresholds as low as 57% and 40% can be applied for filtering of measurements in the near-bed and boulder’s wake regions, respectively. These findings indicated that applying common strict signal correlation thresholds is not necessarily the best practice to filter velocity data in the near-bed and turbulent regions.
Czasopismo
Rocznik
Strony
2251--2267
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
autor
  • Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699, USA
  • Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699, USA
  • Department of Civil Engineering, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
Bibliografia
  • 1. Baki ABM, Zhang W, Zhu DZ, Rajaratnam N (2016) Flow structures in the vicinity of a submerged boulder within a boulder array. J Hydraul Eng 143(5):04016104
  • 2. Biron PM, Robson C, Lapointe MF, Gaskin SJ (2004) Comparing different methods of bed shear stress estimates in simple and complex flow fields. Earth Surf Processes Landforms 29(11):1403–1415
  • 3. Blanckaert K, Lemmin U (2006) Means of noise reduction in acoustic turbulence measurements. J Hydraul Res 44(1):3–17
  • 4. Buffin-Bélanger T, Roy AG (2005) 1 min in the life of a river: selecting the optimal record length for the measurement of turbulence in fluvial boundary layers. Geomorphology 68(1):77–94
  • 5. Buffin-Bélanger T, Roy AG (1998) Effects of a pebble cluster on the turbulent structure of a depth-limited flow in a gravel-bed river. Geomorphology 25(3–4):249–267
  • 6. Cea L, Puertas J, Pena L (2007) Velocity measurements on highly turbulent free surface flow using ADV. Exp Fluids 42(3):333–348
  • 7. Chanson H, Trevethan M, Koch C (2007) Discussion of “turbulence measurements with acoustic doppler velocimeters” by Carlos M. García, Mariano I. Cantero, Yarko Niño, and Marcelo H. García. J Hydraulic Eng 133(11):1283–1286
  • 8. Chmiel O, Baselt I, Malcherek A (2019) Applicability of acoustic concentration measurements in suspensions of artificial and natural sediments using an acoustic Doppler velocimeter. Acoustics 1(1):59–77
  • 9. Clunie TM, Nikora VI, Coleman SE, Friedrich H, Melville BW (2007) Flow measurement using flying ADV probes. J Hydraul Eng 133(12):1345–1355
  • 10. Dizabadi S, Hakim SS, Azimi AH (2020) Discharge characteristics and structure of flow in labyrinth weirs with a downstream pool. Flow Measurement Instrum 71:101683
  • 11. Doroudian B, Bagherimiyab F, Lemmin U (2010) Improving the accuracy of four-receiver acoustic Doppler velocimeter (ADV) measurements in turbulent boundary layer flows. Limnol Oceanogr Methods 8(11):575–591
  • 12. Fang HW, Liu Y, Stoesser T (2017) Influence of boulder concentration on turbulence and sediment transport in open-channel flow over submerged boulders. J Geophys Res Earth Surf 122(12):2392–2410
  • 13. Finelli CM, Hart DD, Fonseca DM (1999) Evaluating the spatial resolution of an acoustic Doppler velocimeter and the consequences for measuring near-bed flows. Limnol Oceanogr 44(7):1793–1801
  • 14. García CM, Cantero MI, Niño Y, García MH (2005) Turbulence measurements with acoustic Doppler velocimeters. J Hydraul Eng 131(12):1062–1073
  • 15. Golpira A, Baki AB, Zhu DZ (2020) Higher-order velocity moments, turbulence scales and energy dissipation rate around a boulder in a rock-ramp fish passage. Sustainability 12(13):5385
  • 16. Golpira A, Baki ABM, Zhu DZ (2021) Turbulent events around an intermediately submerged boulder under wake-interference flow regime. J Hydraul Eng 147(7):06021005
  • 17. Goring DG, Nikora VI (2002) Despiking acoustic Doppler velocimeter data. J Hydraul Eng 128(1):117–126
  • 18. Huang C, Qiao F, Ma H (2020) Noise reduction of acoustic Doppler velocimeter data based on Kalman filtering and autoregressive moving average models. Acta Oceanol Sin 39:1–8
  • 19. Hurther D, Lemmin U (2001) A correction method for turbulence measurements with a 3D acoustic Doppler velocity profiler. J Atmos Oceanic Tech 18(3):446–458
  • 20. Islam MR, Zhu DZ (2013) Kernel density-based algorithm for despiking ADV data. J Hydraul Eng 139(7):785–793
  • 21. Kazemi M, Khorsandi B, Mydlarski L (2021) Effect of acoustic Doppler velocimeter sampling volume size on measurements of turbulence. J Atmos Oceanic Tech 38(2):259–268
  • 22. Khorsandi B, Mydlarski L, Gaskin S (2012) Noise in turbulence measurements using acoustic Doppler velocimetry. J Hydraul Eng 138(10):829–838
  • 23. Lacey RJ, Rennie CD (2012) Laboratory investigation of turbulent flow structure around a bed-mounted cube at multiple flow stages. J Hydraul Eng 138(1):71–84
  • 24. Lacey RWJ, Roy AG (2008) Fine-scale characterization of the turbulent shear layer of an instream pebble cluster. J Hydraul Eng 134(7):925–936
  • 25. Lama GFC, Errico A, Francalanci S, Solari L, Preti F, Chirico GB (2020) Evaluation of flow resistance models based on field experiments in a partly vegetated reclamation channel. Geosciences 10(2):47
  • 26. Martin V, Fisher TSR, Millar RG, Quick MC (2002) ADV data analysis for turbulent flows: low correlation problem. Hydraulic Measurements Exp Methods 2002:1–10
  • 27. McLelland SJ, Nicholas AP (2000) A new method for evaluating errors in high-frequency ADV measurements. Hydrol Process 14(2):351–366
  • 28. Moeini M, Khorsandi B, Mydlarski L (2020) Effect of acoustic Doppler velocimetry sampling frequency on statistical measurements of turbulent axisymmetric jets. J Hydraul Eng 146(7):04020048
  • 29. Montero VGG, Romagnoli M, García CM, Cantero MI, Scacchi G (2014) Optimization of ADV sampling strategies using DNS of turbulent flow. J Hydraul Res 52(6):862–869
  • 30. Mori N, Suzuki T, Kakuno S (2007) Noise of acoustic Doppler velocimeter data in bubbly flows. J Eng Mech 133(1):122–125
  • 31. Morris HM (1955) Flow in rough conduits. Trans ASME 120:373–398
  • 32. Nikora VI, Goring DG (1998) ADV measurements of turbulence: can we improve their interpretation? J Hydraul Eng 124(6):630–634
  • 33. Nikora N, Nikora V, O’Donoghue T (2013) Velocity profiles in vegetated open-channel flows: combined effects of multiple mechanisms. J Hydraul Eng 139(10):1021–1032
  • 34. Nortek AS (2015) Comprehensive manual. Technical Report.
  • 35. Papanicolaou AN, Kramer CM, Tsakiris AG, Stoesser T, Bomminayuni S, Chen Z (2012) Effects of a fully submerged boulder within a boulder array on the mean and turbulent flow fields: Implications to bedload transport. Acta Geophys 60(6):1502–1546
  • 36. Parsheh M, Sotiropoulos F, Porté-Agel F (2010) Estimation of power spectra of acoustic-Doppler velocimetry data contaminated with intermittent spikes. J Hydraul Eng 136(6):368–378
  • 37. Precht E, Janssen F, Huettel M (2006) Near-bottom performance of the acoustic Doppler velocimeter (ADV)—a comparative study. Aquat Ecol 40(4):481–492
  • 38. Przyborowski Ł, Łoboda AM, Bialik RJ (2019) Effect of two distinct patches of Myriophyllum species on downstream turbulence in a natural river. Acta Geophys 67(3):987–997
  • 39. Reungoat D, Chanson H, Keevil CE (2015) Field measurements of unsteady turbulence in a tidal bore: the Garonne River in October 2013. J Hydraul Res 53(3):291–301
  • 40. Ruonan B, Liekai C, Xingkui W, Danxun L (2016) Comparison of ADV and PIV measurements in open channel flows. Proc Eng 154:995–1001
  • 41. Salehi S, Esmaili K, Azimi AH (2019) Mean velocity and turbulent characteristics of flow over half-cycle cosine sharp-crested weirs. Flow Meas Instrum 66:99–110
  • 42. Schalko I, Wohl E, Nepf HM (2021) Flow and wake characteristics associated with large wood to inform river restoration. Sci Rep 11(1):1–12
  • 43. Smith HD, Foster DL (2005) Modeling of flow around a cylinder over a scoured bed. J Waterw Port Coast Ocean Eng 131(1):14–24
  • 44. Strom KB, Papanicolaou AN (2007) ADV measurements around a cluster microform in a shallow mountain stream. J Hydraul Eng 133(12):1379–1389
  • 45. Sukhodolov AN, Krick J, Sukhodolova TA, Cheng Z, Rhoads BL, Constantinescu GS (2017) Turbulent flow structure at a discordant river confluence: asymmetric jet dynamics with implications for channel morphology. J Geophys Res Earth Surf 122(6):1278–1293
  • 46. Sulaiman MS, Sinnakaudan SK, Shukor MR (2013) Near bed turbulence measurement with acoustic Doppler velocimeter (ADV). KSCE J Civ Eng 17(6):1515–1528
  • 47. Thomas RE, Schindfessel L, McLelland SJ, Creëlle S, De Mulder T (2017) Bias in mean velocities and noise in variances and covariances measured using a multistatic acoustic profiler: the Nortek Vectrino profiler. Measurement Sci Technol 28(7):075302
  • 48. Voulgaris G, Trowbridge JH (1998) Evaluation of the acoustic Doppler velocimeter (ADV) for turbulence measurements. J Atmos Oceanic Tech 15(1):272–289
  • 49. Wahl TL (2000) Analyzing ADV data using WinADV. Joint Conference on Water Resources Engineering and Water Resources Planning and Management, Minneapolis, Minnesota.
  • 50. Wahl TL (2003) Discussion of “despiking acoustic Doppler velocimeter data” by Derek G. Goring and Vladimir I. Nikora. J Hydraulic Eng 129(6):484–487
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6efa00e4-3acf-45f2-9122-e5235ef15637
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.