Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The technology of producing castings of high-quality inoculated cast iron with flake graphite particles in the structure is a combination of the melting and inoculation process. Maintaining the stability of the strength and microstructure parameters of this cast iron is the goal of a series of studies on the control of graphitization and austenitic inoculation (increasing the number of primary austenite dendrites), and which affects the type of metal matrix in the structure. The ability to graphitize the molten alloy decreases with its holding in the melting furnace more than an hour. The tendency to crystallize large dendritic austenite grains and segregation of elements such as Si, Ni and Cu reduce the ductility properties of this cast iron. The austenite inoculation process may introduce a larger number of primary austenite grains into the structure, affecting the even distribution of graphite and metal matrix precipitation in the structure. Known inoculation effects the interaction (in low mass) of additives: Sr, Ca, Ba, Ce, La, produces MC2 carbide). Addition of Fe in the inoculant influences the number and shape of austenite dendrites. Hybrid modification combines the effects of these two factors. The introduction of nucleation sites for the graphite eutectics and primary austenite grains result in the stabilization of the cast iron microstructure and an increase in mechanical properties. The obtained test results set the direction for further research in this area in relation to the production of heavy plate castings in vertical and horizontal pouring.
Wydawca
Czasopismo
Rocznik
Tom
Strony
359--368
Opis fizyczny
Bibliogr. 21 poz., fot., rys., tab., wykr.
Twórcy
autor
- AGH University of Science and Technology, Department of Engineering of Cast Alloys and Composites, Faculty of Foundry Engineering, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
- AGH University of Science and Technology, Department of Engineering of Cast Alloys and Composites, Faculty of Foundry Engineering, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
- Krakodlew S.A., 1 Ujastek St., 30-969 Krakow, Poland
autor
- AGH University of Science and Technology, Department of Engineering of Cast Alloys and Composites, Faculty of Foundry Engineering, Al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
- [1] E. Guzik, Procesy uszlachetniania żeliwa - wybrane zagadnienia. Archives of Foundry, PAN Katowice (2001).
- [2] M. Benedetti M.E. Torresani, V. Fontanari, D. Lusuardi, Metals 7, 88 (2017).
- [3] J. Dorula, D. Kopyciński, E. Guzik, A. Szczęsny, D. Gurgul, Materials 14, 21, 6682, 1-17 (2021).
- [4] D. Kopyciński, Shaping of structure and mechanical properties in cast iron for operation under harsh conditions: (selected issues). Archives of Foundry Engineering. Wydawnictwo Komisji Odlewnictwa PAN Gliwice (2015).
- [5] Q. Wang, G. Cheng, Y. Hou, Metals 10, 4-15 (2020).
- [6] Q. Wang, S. Chen, L. Rong, Metall. Mater. Trans. 51, 2998-3008 (2020).
- [7] B. Kalandyk, R. Zapała, S. Sobula, M. Górny, Ł. Boroń, Metalurgija-Metallurgy 53, 4, 613-616 (2014).
- [8] B. Kalandyk, R. Zapała, Archives of Foundry Engineering 13, 4, 63-66 (2013).
- [9] D. Tęcza, R. Zapała, Archives of Foundry Engineering 18, 1, 119-122 (2018).
- [10] G. Tęcza, Materials 15, 3, 1-11 (2022).
- [11] S. Sobula, S. Krański, Archives of Foundry Engineering 21, 4, 82-86 ( 2021).
- [12] M. Celis, B. Domengès, E. Hug, J. Lacaze, Materials Science Forum 925, 173-180 (2018).
- [13] R. Gilewski, D. Kopyciński, E. Guzik, A. Szczęsny, Materials 14, 20, 5993, 1-15 (2021).
- [14] R. Gilewski, D. Kopyciński, E. Guzik, A. Szczęsny, Appl. Sci.-Basel. 11, 20, 9527, 1-15 (2021).
- [15] D. Kopyciński, D. Siekaniec, A. Szczęsny, M. Sokolnicki, A. Nowak, Archives of Foundry Engineering 26, 4, 74-77 (2016).
- [16] A. Szczęsny, D. Kopyciński, E. Guzik, G. Soból, K. Piotrowski, P. Bednarczyk, W. Paul, Acta Metallurgica Slovaca 26, 74-77 (2020).
- [17] M.M. Mourad, S. El-Hadad, Journal of Metallurgy 9, 1-11 (2015).
- [18] E. Foglio, M. Gelfi, A. Pola, D. Lusuardi, Key. Eng. Mat. 754, 95-98 (2017).
- [19] F. Kavicka, B. Sekanina, J. Stetina, K. Stransky, V. Gontarev, J. Dobrovska, Materials and Technology 43, 73-78 (2009).
- [10] O. Kubaschewski, H. Okamoto, Phase diagrams of binary iron alloy, ASM International, Materials Park (1993).
- [21] A. Szczęsny, D. Kopyciński, E. Guzik, G. Soból, K. Piotrowski, P. Bednarczyk, W. Paul, Metallurgica Slovaca 26, 74-77 (2020)
Uwagi
1. The publication was created during the implementation of the project RPMP.01.02.01-12-0055/18 in Foundry Krakodlew S.A. in Cracow financed by the Regional Operational Program of the Małopolskie Voivodeship, Poland.
2. Błędna numeracja bibliografii.
3. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ef8748a-a973-4831-9629-44de3196f30e