Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Characteristic strain is a key parameter connecting the hardness and flow stress for indentation experiments. However, there are significant difference between the characteristic strains obtained from previous models. In this work, the indentation characteristic strain is determined based on continuum damage mechanics for Al 5052. Combined indentation tests with the repeated loading-unloading tensile experiments, the indentation characteristic strain is deduced from the reduced Young’s modulus. The relationship between indentation characteristic strain and indent depth is established, and the limitation of indentation characteristic strain is determined as 0.12703. From the simulation study, average equivalent plastic strain (PEEQ) is calculated, which also is a function of indent depth. The limitation of average PEEQ is 0.11168, which well agrees with Tekkaya’s result (0.112). Furthermore, the relationship between indentation characteristic strain and average PEEQ is deduced.
Wydawca
Czasopismo
Rocznik
Tom
Strony
973--980
Opis fizyczny
Bibliogr. 40 poz., fot., rys., tab.
Twórcy
autor
- CNPC Tubular Goods Research Institute, Xi’an, Shaanxi 710064, China
autor
- Yihuang Gas Project Department of Petrochina Changqing Oilfield Company, Yan’an, Shaanxi 716200, China
autor
- Chang’an University, School of Materials Science and Engineering, Xi’an, Shaanxi 710061, China
Bibliografia
- [1] D. Tabor, The hardness of metals, Clarendon Press 1951.
- [2] N.A. Branch, G. Subhash, N.K. Arakere, M.A. Klecka, Material-dependent representative plastic strain for the prediction of indentation hardness. Acta Materialia 58 (19), 6487-6494 (2010).
- [3] Y.-T. Cheng, Z. Li, Hardness obtained from conical indentations with various cone angles. Journal of Materials Research 15 (12) 2830-2835 (2000).
- [4] A.G. Atkins, D. Tabor, Plastic Indentation In Metals With Cones 13 (3), 149-164 (1965).
- [5] K.L. Johnson, The correlation of indentation experiments. Journal of the Mechanics & Physics of Solids 18 (2) 115-126 (2021).
- [6] S. Jayaraman, G. Hahn, W. Oliver, C. Rubin, P. Bastias, Determination of monotonic stress-strain curve of hard materials from ultra-low-load indentation tests. International Journal of Solids and Structures 35 (5), 365-381 (1998).
- [7] H. Chen, Z. Fu, D. Chen, H. Peng, W. Li, Z. Meng, Z. Fan, A unified sharp indentation method for obtaining stress-strain relations, strength and Vickers hardness of ductile metallic materials. Materials Today Communications 33, 104652 (2022).
- [8] G. Han, L. Cai, H. Xiao, M. Huang, A novel flat indentation test method for obtaining stress-strain relationships of metallic materials based on energy density equivalence, International Journal of Solids and Structures 269, 112195 (2023).
- [9] M. Dao, N. Chollacoop, K. Van Vliet, T. Venkatesh, S. Suresh, Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Materialia 49 (19), 3899-3918 (2001).
- [10] N. Ogasawara, N. Chiba, X. Chen, Representative strain of indentation analysis. Journal of Materials Research 20 (8), 2225-2234 (2005).
- [11] Y. Li, D. Omacht, F. Yu, M. Sun, A new spherical indentation approach to determine fracture toughness of high strength steels. Engineering Fracture Mechanics 272, 108695 (2022).
- [12] J.D. Clayton, J.T. Lloyd, D.T. Casem, Simulation and dimensional analysis of instrumented dynamic spherical indentation of ductile metals. International Journal of Mechanical Sciences 251, 108333 (2023).
- [13] M. Idriss, O. Bartier, D. Guines, L. Leotoing, G. Mauvoisin, X. Hernot, Instrumented indentation for determining stress and strain levels of pre-strained DC01 sheets. International Journal of Mechanical Sciences 238, 107833 (2023).
- [14] A. Bolshakov, G. Pharr, Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques, Journal of Materials Research 13 (4), 1049-1058 (1998).
- [15] J.M. Antunes, J.V. Fernandes, L.F. Menezes, B.M. Chaparro, A new approach for reverse analyses in depth-sensing indentation using numerical simulation. Acta Materialia 55 (1), 69-81 (2006).
- [16] Y. Cao, N. Huber, Further investigation on the definition of the representative strain in conical indentation. Journal of Materials Research 21 (07), 1810-1821 (2004).
- [17] M.M. Chaudhri, Subsurface strain distribution around Vickers hardness indentations in annealed polycrystalline copper. Acta Materialia 46 (9), 3047-3056 (1998).
- [18] Z. Yuan, Y. Wang, W. Tian, Y. Wang, K. Wang, F. Li, Y. Guo, Y. Hu, X. Wang, The relationship between plastic zone and contact radius during indentation experiment for strain-hardened materials. Philosophical Magazine Letters, 209-217 (2017).
- [19] J.L. Bucaille, S. Stauss, E. Felder, J. Michler, Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Materialia 51, 1663-1678 (6).
- [20] K. Eswar Prasad, N. Chollacoop, U. Ramamurty, Role of indenter angle on the plastic deformation underneath a sharp indenter and on representative strains: An experimental and numerical study. Acta Materialia 59 (11), 4343-4355 (2011).
- [21] J. Dong, F. Li, C. Wang, Micromechanical behavior study of α phase with different morphologies of Ti-6Al-4V alloy by microindentation. Materials Science and Engineering: A 580, 105-113 (2013).
- [22] M. He, F. Li, N. Ali, A normalized damage variable for ductile metals based on toughness performance. Materials Science & Engineering: A 528 (3), 832-837 (2011).
- [23] Z. Yuan, C. Wang, F. Li, Y. Hu, Y. Guo, Q. Chen, Y. Wang, M. Guo, Investigation on Behavior of Elastoplastic Deformation for Ti-48Al-2Cr-2Nb Alloy by Micro‐Indentation and FEM‐Reverse Algorithm. Advanced Engineering Materials 19 (8), 17000971-8 (2017).
- [24] Z. Yuan, F. Li, F. Xue, M. Zhang, J. Li, An Investigation of Micro-Mechanical Properties of Al Matrix in SiC/Al Composite by Indentation Experiments. Journal of Materials Engineering and Performance 24 (2), 654-663 (2015).
- [25] W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research 19 (1), 3-20 (2004).
- [26] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research 7 (6), 1564-1583 (1992).
- [27] J. Li, F. Li, F. Xue, J. Cai, B. Chen, Micromechanical behawior study of forged 7050 aluminum alloy by microindentation. Materials & Design 37, 491-499 (2012).
- [28] J. Li, F. Li, M. He, F. Xue, M. Zhang, C. Wang, Indentation technique for estimating the fracture toughness of 7050 aluminum alloy with the Berkovich indenter. Materials & Design 40, 176-184 (2012).
- [29] M. Zhang, F. Li, Z. Yuan, J. Li, S. Wang, Effect of heat treatment on the micro-indentation behavior of powder metallurgy nickel based superalloy FGH96. Materials & Design 49, 705-715 (2013).
- [30] C.C. Tasan, J.P.M. Hoefnagels, M.G.D. Geers, Identification of the continuum damage parameter: An experimental challenge in modeling damage evolution. Acta Mater 60 (8), 3581-3589 (2012).
- [31] K. Johnson, The correlation of indentation experiments. Journal of the Mechanics and Physics of Solids 18 (2), 115-126 (1970).
- [32] A.E. Tekkaya, K. Lange, An Improved Relationship between Vickers Hardness and Yield Stress for Cold Formed Materials and its Experimental Verification. CIRP Annals - Manufacturing Technology 49 (1), 205-208 (2000).
- [33] V.V. Bulatov, W.G. Wolfer, M. Kumar, Shear impossibility: Comments on “Void growth by dislocation emission” and “Void growth in metals: Atomistic calculations”. Scripta Mater 63 (1), 144-147 (2010).
- [34] G. Monnet, Mechanical and energetical analysis of molecular dynamics simulations of dislocation-defect interactions. Acta Materialia 55 (15), 5081-5088 (2007).
- [35] M. Zhang, F. Li, Z. Yuan, J. Li, S. Wang, Effect of heat treatment on the micro-indentation behavior of powder metallurgy nickel based superalloy FGH96. Materials & Design 49, 705-715 (2013).
- [36] R. Billardon, L. Moret-Bailly, Fully coupled strain and damage finite element analysis of ductile fracture. Nuclear Engineering & Design 105 (1), 43-49 (1987).
- [37] J.S. Cope, D. Corney, J.Y. Clark, P. Remagnino, P. Wilkin, Plant species identification using digital morphometrics: A review. Expert Systems with Applications (39), 7562-7573 (2012).
- [38] Z. Yuan, Y. Wang, W. Tian, Y. Wang, K. Wang, F. Li, Y. Guo, Y. Hu, X. Wang, The relationship between plastic zone and contact radius during indentation experiment for strain-hardened materials. Philosophical Magazine Letters 98 (5), 209-217 (2018).
- [39] K. Durst, B. Backes, O. Franke, M. Göken, Indentation size effect in metallic materials: Modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Materialia 54 (9), 2547-2555 (2006).
- [40] Q. Ma, D.R. Clarke, Size dependent hardness of silver single crystals. Journal of Materials Research 10, 853-863 (1995).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ef6aae0-249d-4f62-9203-53223467be88
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.