PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Utilization of Renewable Alcohol in an Internal Combustion Engine with Thermo-Chemical Recuperation of the Exhaust Gas Energy

Identyfikatory
Warianty tytułu
PL
Wykorzystanie odnawialnego alkoholu w silniku spalinowym z termochemiczną rekuperacją energii gazów spalinowych
Języki publikacji
EN
Abstrakty
EN
Internal combustion engines (ICEs) are greatly responsible for fossil fuels consumption and environmental pollution. Development of more fuel-efficient ICEs together with alternative fuels is, therefore, of great importance. ICE's. overall efficiency can be improved by utilization of the thermal energy wasted with the exhaust gases. One method of exploiting this energy is by promoting endothermic fuel reforming reactions that increases the lower heating value (LHV) of the fuel introduced to the engine and allows combustion of a hydrogen-rich gaseous fuel. This method is commonly called thermo-chemical recuperation (TCR). Although TCR is feasible with conventional fuels, it is frequently realized with alcohol fuels that can be synthesized from methane or biomass, since their reforming temperature is lower. For this study, a gen-set gasoline-fed carburetor single-cylinder SI engine was modified to allow working with gasoline and methanol steam reforming (MSR) products. It was found that engine feeding by MSR products has a great potential for pollutant emissions mitigation as compared with gasoline. Harmful emissions of the pollutants CO, NOx and the GHG gas CO2 were reduced by 96%, 99% and 32% respectively. Particle number (PN) emissions were reduced by 99.7%. The achieved energy efficiency improvement of the engine fed by the methanol reformate was found to be from 20 up to 70% when compared with gasoline.
Rocznik
Tom
Strony
216--232
Opis fizyczny
Bibliogr. 19 poz., tab., wykr., zdj.
Twórcy
  • Technion - Israel Institute of Technology, Technion City, Haifa, Israel
  • Technion - Israel Institute of Technology, Technion City, Haifa, Israel
Bibliografia
  • [1] US EIA. Monthly energy review, March 2015, 2015.
  • [2] He, M., Zhang, X., Zeng, K., Gao, K.: (2011). A combined thermodynamic cycle used for waste heat recovery of internal combustion engine. Energy, 36(12), pp. 6821-6829.
  • [3] Tartakovsky, L., Gutman M. and Mosyak A.: (2012). Energy efficiency of road vehicles - trends and challenges. Chapter 3 in the Edited Collection Energy Efficiency: Methods, Limitations and Challenges'; Emmanuel F. Santos Cavalcanti and Marcos Ribeiro Barbosa (editors). Nova Science Publishers, pp. 63-90.
  • [4] Poran, A., Artoul, M., Sheintuch, M., and Tartakovsky, L.: (2014). Modeling Internal Combustion Engine with Thermo-Chemical Recuperation of the Waste Heat by Methanol Steam Reforming. SAE Int. J. Engines 7(1):234-242.
  • [5] Rakopoulos, C. D., Scott, M. A., Kyritsis, D. C., Giakoumis, E. G.: (2008). Availability analysis of hydrogen/natural gas blends combustion in internal combustion engines. Energy, 33(2), pp. 248-255.
  • [6] Pettersson, L. and Sjostrom, K.: (1991). Decomposed Methanol as a Fuel - A review. Combustion science and technology, 80(4-6), pp. 265-303.
  • [7] Sakai, T, Yamaguchi, L, Asano, M., Ayusawa, T., Kim, Y. K.: (1987). Transient Performance Development on Dissociated Methanol Fueled Passenger Car. SAE Technical Paper 871169.
  • [8] Finegold, J. G. (1984). Dissociated methanol vehicle test results (No. SERI/TP-234- 2245; CONF-840543-2). Solar Energy Research Inst., Golden, CO (USA).
  • [9] Brinkman, N. D. and Stebar, R. E: (1985). A Comparison of Methanol and Dissociated Methanol Illustrating effects of Fuel Properties on Engine Efficiency -Experiments and Thermodynamic Analyses. SAE Technical Paper 850217.
  • [10] Wimmer, A., Wallner, T., Ringler, J., Gerbig, F.: (2005). H2-direct injection-a highly promising combustion concept. SAE Technical Paper 2005-01-0108.
  • [11] Poran, A. and Tartakovsky, L.: (2015). Energy efficiency of a direct-injection internal combustion engine with high-pressure methanol steam reforming. Energy 88:506-514.
  • [12] Tartakovsky, L., Mosyak, A., Zvirin, Y.: (2013). Energy analysis of ethanol steam reforming for hybrid electric vehicle. International Journal of Energy Research 37: 259- 267.
  • [13] Mohamad, T. I.: (2010). Compressed Natural Gas Direct Injection (Spark Plug Fuel Injector). INTECH Open Access Publisher.
  • [14] Varde, K. S. and Frame, G. A.: (1985). Development of a high-pressure hydrogen injection for SI engine and results of engine behavior. International Journal of Hydrogen Energy 10(11): 743-748.
  • [15] Hassan, M. H., Kalam, M. A., Mahlia, T. I., et al.: (2009). Experimental test of a new compressed natural gas direct injection engine. Energy & Fuels 23(10): 4981-4987.
  • [16] Linz Electric. Products overview, 04-14.
  • [17] Giechaskiel, B., Mamakos, A., Andersson, J., et al.: (2012). Measurement of automotive nonvolatile particle number emissions within the European legislative framework: A review. Aerosol Science and Technology 46(7): 719-749.
  • [18] Heywood, J. B.: (1988). Internal combustion engine fundamentals (Vol. 930). New York: Mcgraw-Hill.
  • [19] Tartakovsky, L., Baibikov, V., Veinblat, M.: (2013). Comparative Performance Analysis of SI Engine Fed by Ethanol and Methanol Reforming Products. SAE Technical Paper 2013-01-2617.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ef31f66-1bc5-4d9a-afb6-ec1a7e35f421
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.