PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Multilayer Interlocked Fabrics Structure on Their Thermal Performance

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper examines the influence of weaving variables such as yarn count, number of layers, warp and weft ratio, materials of the top layer, weft density and interlocking cell shape, and size on the thermal performance of multilayer interlocked woven fabrics. A split-plot design was used to construct a total of 64 fabric structures, which were assessed for thermal performance in terms of resistance to convective, conductive, and radiative heat. It was found that, for equal weft density and yarn number, protective performance improved with the number of fabric layers and with the presence of air cells between these layers, especially if air was not trapped within and could rather pass freely between the cells. An optimal combination of factors for the thermal response to the three types of heat was established via a Derringer–a much needed desirability function. The results of this paper are useful for identifying the interaction between configuration parameters and thermal performance, and hence for the design of improved heat protective clothing.
Rocznik
Strony
466--476
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
  • INTEXTER, Universitat Politècnica de Catalunya–Barcelona TECH, C/Colom 11, E-08222 Terrassa (Barcelona), Spain
  • INTEXTER, Universitat Politècnica de Catalunya–Barcelona TECH, C/Colom 11, E-08222 Terrassa (Barcelona), Spain
  • INTEXTER, Universitat Politècnica de Catalunya–Barcelona TECH, C/Colom 11, E-08222 Terrassa (Barcelona), Spain
  • INTEXTER, Universitat Politècnica de Catalunya–Barcelona TECH, C/Colom 11, E-08222 Terrassa (Barcelona), Spain
Bibliografia
  • [1] Zhiying, C., Yanmin, W., Weiyuan, Z. (2010). Thermal protective performance and moisture transmission of firefighter protective clothing based on orthogonal design. Jounral of Industrial Textiles, 39(4), 347-356.
  • [2] Benisek, L., Edmondson, G. K., Phillips, W. A. (1979). Protective clothing-Evaluation of wool and other fabrics. Textile Research Journal, 49(4), 212-221.
  • [3] Chapman, A. C., Miller, G. (1980). Fibres, fabrics and finishes for FR workwear in Europe. Journal of Industrial Textiles, 10(1): 26-34.
  • [4] Gauthier, M. M., Deanin, R. D., Pope, C. J. (1981). Man-made fibres: Flame retardance and flame redardants. Polymer Plastics Technology and Engineering, 16(1), 1-39.
  • [5] Holcombe, B. V. (1983). The heat related properties of protective clothing fabrics. Fire Safety Journal, 6(2), 129-141.
  • [6] Lee Y. M., Barker R. L. (1987). Thermal protective performance of heat-resistant fabrics in various high intensity heat exposures. Textile Research Journal, 57(3), 123-132.
  • [7] Mehta, P. N. (1980). Engineered wool industrial protective clothing. Textile Research Journal, 50(3), 185-193.
  • [8] Perkins, R. M. (1979). Insulative values of single-layer fabrics for thermal protective clothing. Textile Research Journal, 49(4), 202-205.
  • [9] Sirvydas, P. A., Nadzeikienė, J., Milašius, R., Eičinas, J., Kerpauskas, P. (2006). The role of the textile layer in the garment package in suppressing transient heat exchange processes. Fibres Textiles East Europe, 14, 2(56), 55-58.
  • [10] Ding, D., Tang, T., Song, G., McDonald, A. (2011). Characterizing the performance of a single-layer fabric system through a heat and mass transfer model – Part I: Heat and mass transfer model. Textile Research Journal, 81, 398-411.
  • [11] Shalev, I., Barker, R. L. (1983). Analysis of heat transfer characteristics of fabrics in an open flame exposure. Textile Research Journal, 53(8), 475-482.
  • [12] Shalev, I., Barker, R. L. (1984). Protective fabrics: A comparison of laboratory methods for evaluating thermal protective performance in convective/radiant exposures. Textile Research Journal, 54(10), 648-654.
  • [13] Abdel-Rehim, Z. S., Saad, M. M., El-Shakankery, M., Hanafy, I. (2006). Textile fabrics as thermal insulators. AUTEX Research Journal, 6(3), 148-161.
  • [14] Moo, Y., Barker, R. L. (1987). Thermal protective performance of heat-resistant fabrics in various high intensity heat exposures. Textile Research Journal, 57(3), 123-132.
  • [15] Mandal, S., Song, G., Ackerman, M., Paskaluk, S., Gholamreza, F. (2013). Characterization of textile fabrics under various thermal exposures. Textile Research Journal, 83(10), 1005-1019.
  • [16] Padaki, N. V., Alagirusamy, R., Deopura, B. L., Fangueiro, R. (2010). Studies on preform properties of multilayer interlocked woven structures using fabric geometrical factors. Journal of Industrial Textiles, 39(4), 327-346.
  • [17] Derringer, G. C., Suich, R. (1980). Simultaneous optimization of several responses. Journal of Quality Technology, 12(4), 214-219.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ef24dd8-ea5f-4ddd-9532-3aa2dfcb186a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.