PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Qualitative and quantitative analysis of tensegrity domes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper concerns steel domes with regard to the special structures named tensegrity. Tensegrities are characterized by the occurrence of self-stress states. Some of them are also characterized by the presence of infinitesimal mechanisms. The aim of this paper is to prove that only tensegrity domes with mechanisms are sensitive to the change of the level of initial prestress. Two tensegrity domes are considered. In addition, a standard single-layer dome is taken into account for comparison. The analysis is carried out in two stages. Firstly, the presence of the characteristic tensegrity features is examined (qualitative analysis). Next, the behavior under static external loads is studied (quantitative analysis). In particular, the influence of the initial prestress level on displacements, effort, and stiffness of the structure is analyzed. To evaluate this behavior, a geometrically non-linear model is used. The model is implemented in an original program written in the Mathematica environment. The analysis demonstrates that for a dome with mechanisms, the adjustment of pre-stressing forces influences the static properties. It has been found that the stiffness depends not only on the geometry and properties of the material but also on the initial prestress level and external load. In the case of the non-existence of mechanisms, structures are insensitive to the initial prestress level.
Rocznik
Strony
art. no. e144574
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Faculty of Civil Engineering and Architecture, Kielce University of Technology, Poland
  • Faculty of Civil Engineering and Architecture, Kielce University of Technology, Poland
  • Faculty of Civil Engineering and Architecture, Kielce University of Technology, Poland
Bibliografia
  • [1] A. Zingoni and N. Enoma, “On strength and stability of elliptic toroidal domes,” Eng. Struct., vol. 207, p. 110241, 2020, doi: 10.1016/j.engstruct.2020.110241.
  • [2] S. Kato, J.M. Kim, and M.C. Cheong, “A new proportioning method for member sections of single-layer reticulated domes subjected to uniform and non-uniform loads,” Eng. Struct., vol. 25, no. 10, pp. 1265–1278, 2003, doi: 10.1016/S0141-0296(03)00077-4.
  • [3] X. Zhao, S. Yan, and Y. Chen, “Comparison of progressive collapse resistance of single-layer latticed domes under different loadings,” J. Constr. Steel Res., vol. 129, pp. 204–214, 2017, doi: 10.1016/j.jcsr.2016.11.012.
  • [4] L. Tian, J. He, C. Zhang, and R. Bai, “Progressive collapse resistance of single-layer latticed domes subjected to non-uniform snow loads,” J. Constr. Steel Res., vol. 176, p. 106433, 2021, doi: 10.1016/j.jcsr.2020.106433.
  • [5] X. Yan, Y. Yang, Z. Chen, and Q. Ma, “Mechanical properties of a hybrid cable dome under non-uniform snow distribution,” J. Constr. Steel Res., vol. 153, pp. 519–532, 2019, doi: 10.1016/j.jcsr.2018.10.022.
  • [6] U. Radoń, P. Zabójszcza, and D. Opatowicz, “Assesment of the effect of wind load on the load capacity of a single-layer bar dome,” Buildings, vol. 10, no. 179, pp. 1–27, 2020, doi: 10.3390/buildings10100179.
  • [7] H. Karimi and I.M. Kani, “Finding the worst imperfection pattern in shallow lattice domes using genetic algorithms,” J. Building Eng., vol. 23, pp. 107–113, 2019, doi: 10.1016/j.jobe.2019.01.018.
  • [8] J. Błachut, “Impact of local and global shape imperfections on buckling of externally pressurised domes,” nt. J. Pressure Vessels Pip., vol. 188, p. 104178, 2020, doi: 10.1016/j.ijpvp.2020.104178.
  • [9] P. Zabojszcza and U. Radoń, “The impact of node location imperfections on the reliability of single-layer steel domes,” Appl. Sci., vol. 9, no. 13, p. 2742, 2019, doi: 10.3390/app9132742.
  • [10] M. Lu and J. Ye, “Guided genetic algorithm for dome optimization against instability with discrete variables,” J. Constr. Steel Res., vol. 139, pp. 149–156, 2017, doi: 10.1016/j.jcsr.2017.09.019.
  • [11] M. Lu and J. Ye, “Design optimization of domes against instability considering joint stiffness,” J. Constr. Steel Res., vol. 169, p. 105757, 2020, doi: 10.1016/j.jcsr.2019.105757.
  • [12] G.P. Cimellaro and M. Domaneschi, “Stability analysis of different types of steel scaffolds,” Eng. Struct., vol. 152, pp. 535–548, 2017, doi: 10.1016/j.engstruct.2017.07.091.
  • [13] Y. Guan, L.N. Virgin, and D. Helm, “Structural behavior of shallow geodesic lattice domes,” Int. J. Solids Struct., vol. 155, pp. 225–239, 2018, doi: 10.1016/j.ijsolstr.2018.07.02.
  • [14] P. Zabojszcza, U. Radoń, and W. Szaniec, “Probabilistic approach to limit states of a steel dome,” Materials, vol. 14, no. 19, p. 5528, 2021, doi: 10.3390/ma14195528.
  • [15] A. Dudzik and B. Potrzeszcz-Sut, “Hybrid approach to the first order reliability method in the reliability analysis of a spatial structure,” Appl. Sci., vol. 11, no. 2, p. 648, 2021, doi: 10.3390/app11020648.
  • [16] D.H. Geiger, “The design and construction of two cable domes for the Korea Olympics. Shells, Membranes and Space Frame,” in Proc. IASS Symposium, Osaka, 1986, pp. 265–272.
  • [17] B.B. Wang, “Cable-Strut system: part 1, tensegrity,” J. Construct. Steel Res., vol. 45, no. 3, pp. 281–289, 1998.
  • [18] J. Rębielak, “Structural system of cable dome shaped by means of simple form of spatial hoops,” in Proc. Lightweight structures in Civil Engineering, 2000, pp. 114–115.
  • [19] M. Kawaguchi, I. Tatemichi, and P.S. Chen, “Optimum shapes of a cable dome structure,” Eng. Struct., vol. 21, no. 8, pp. 719–725, 1999, doi: 10.1016/S0141-0296(98)00026-1.
  • [20] M. Levy and G. Castro, “Analysis of the Georgia dome Cable Roof,” in Proc. of the Eight Conference of Computing in Civil Eng. And Geogr. Inf. Systems Symposium, ASCE, 1992, pp. 7–9.
  • [21] M. Levy, “Floating fabric over Georgia dome,” Civil Eng. ASCE, vol. 61, no. 11, pp. 34–37, 1991.
  • [22] J. Lee, H.C. Tran, and K. Lee, “Advanced form-finding for cable dome structures,” in Proc. of IASS Symposium, 2009.
  • [23] Y. Chen, Q. Sun, and J. Feng, “Group-theoretical form-finding of cable-strut structures based on irreducible representations for rigid-body translations,” Int. J. Mech. Sci., vol. 144, pp. 205–215, 2018, doi: 10.1016/j.ijmecsci.2018.05.057.
  • [24] Y. Xue, Y. Luo, and X. Xu, “Form-finding of cable-strut structures with given cable forces and strut lengths,” Mech. Res. Commun., vol. 106, p. 103530, 2020, doi: 10.1016/j.mechrescom.2020.103530.
  • [25] X. Yuan, L. Chen, and S. Dong, “Prestress design of cable domes with new forms,” Int. J. Solids Struct., vol. 44, pp. 2773–2782, 2007, doi: 10.1016/j.ijsolstr.2006.08.026.
  • [26] S. Krishnan, “Structural design and behavior of prestressed cable domes,” Eng. Struct., vol. 209, p. 110294, 2020, doi: 10.1016/j.engstruct.2020.110294.
  • [27] X. Shen, Q. Zhang, D.S.H. Lee, J. Cai, and J. Feng, “Static behavior of a retractable suspen-dome structure,” Symmetry, vol. 13, no. 7, p. 1105, 2021, doi: 10.3390/sym13071105.
  • [28] G. Sun and S. Xiao, “Test and numerical investigation mechanical behavior of cable dome,” Int. J. of Steel Struct., vol. 21, no. 4, pp. 1502-1514, 2021, doi: 10.1007/s13296-021-00517-7.
  • [29] P. Obara, Dynamic and dynamic stability of tensegrity structures, Kielce: Wydawnictwo Politechniki ́Swi ̨etokrzyskiej, 2019. (in Polish)
  • [30] J. Kłosowska, P. Obara, and W. Gilewski, “Self-stress control of real civil engineering tensegrity structures,” AIP Conference Proceedings 1922, 2018, p. 150004, doi: 10.1063/1.5019157.
  • [31] P. Obara and J. Tomasik, “Parametric analysis of tensegrity plate-like structure: Part 2 – Quantitative Analysis,” App. Sci., vol. 11, no. 2, p. 602, 2021, doi: 10.3390/app11020602.
  • [32] P. Obara, J. Kłosowska, and W. Gilewski, “Truth and myths about 2D tensegrity trusses,” App. Sci., vol. 9, p. 179, 2019, doi: 10.3390/app9010179.
  • [33] O.C. Zienkiewicz and R.L. Taylor, The Finite Element Method. Vol. 1. The Basis, London: Elsevier Butterworth-Heinemann, 2000.
  • [34] W. Gilewski et al., “Application of singular value decomposition for qualitative analysis of truss and tensegrity structures,” Acta Sci. Pol. Hortorum Cultus, vol. 11, no. 3, p. 14, 2015.
  • [35] A.G. Tibert and S. Pellegrino, “Review on Form-Finding methods for tensegrity Structures,” Int. J. Space Struct., vol. 18, no. 4, pp. 209–223, 2003, doi: 10.1260/026635103322987940.
  • [36] P. Obara and J. Tomasik, “Parametric analysis of tensegrity plate-like structure: Part 1 – Qualitative Analysis,” App. Sci., vol. 10, no. 20, pp. 7042, 2020, doi: 10.3390/app10207042.
  • [37] P. Obara and J. Tomasik, “Active control of stiffness of tensegrity plate-like structures built with simplex modules,” Materials, vol. 14, no. 24, p. 7888, 2021, doi: 10.3390/ma14247888.
  • [38] Eurocode 3: Design of steel structures – Part 1–11: Design of structures with tension components, EN 1993-1-11: 2006.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6eee2a7b-a97d-4050-8b46-0900ef6e8565
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.