Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: This research aims to develop the mathematical model and propose a method for estimating the feed stochasticity impact on the tangential cutting force during turning. The main reason for this research is that the existing models for determining the tangential component of the cutting force do not take into account the stochasticity of the feed rate. Design/methodology/approach: Measurements of tangential cutting force during turning on general-purpose lathes with known feed dispersion parameters were made. The mathematical model was developed, and dispersion characteristics (mean value, dispersion and mean square deviation) of the tangential cutting force component depending on the corresponding dispersion characteristics of the feed rate were obtained. The method of assessing the impact of stochasticity of the feed rate on the tangential cutting force is proposed. Findings: As the result of the carried-out investigations, it is proved that the stochasticity of the feed rate affects the dispersion of the tangential cutting force during turning. For specific conditions, the share of feed stochasticity in the dispersion of tangential cutting force component is from 40 to 60% and should be taken into account while prescribing rational cutting modes. Practical implications: The obtained results make it possible to adjust the cutting modes, particularly the amount of feed, under the conditions of real equipment to ensure certain power characteristics of the cutting process to prevent overloads during cutting. This investigation benefits to the establishment of additional factors affecting oscillations in the cutting process. Originality/value: The probabilistic-statistical approach is used in this investigation in order to prove that the stochasticity of the feed rate affects the dispersion of the tangential cutting force component.
Wydawca
Rocznik
Tom
Strony
22--31
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
- Ternopil Ivan Puluj National Technical University, Ternopil, Ruska 56 str., Ukraine
autor
- Lviv Polytechnic National University, Lviv, Bandera 12 str., Ukraine
autor
- Ternopil Ivan Puluj National Technical University, Ternopil, Ruska 56 str., Ukraine
autor
- Ternopil Ivan Puluj National Technical University, Ternopil, Ruska 56 str., Ukraine
Bibliografia
- [1] L.M. Bohdanova, L.V. Vasilyeva, D.E. Guzenko, V.M. Kolodyazhny, A Software system to solve the multi-criteria optimization problem with stochastic constraints, Cybernetics and Systems Analysis 54 (2018) 1013-1018. DOI: https://doi.org/10.1007/s10559-018-0104-2
- [2] A.F. Torres, F.B. Rocha, F.A. Almeida, J.H.F. Gomes, A.P. Paiva, P.P. Balestrassi, Multivariate Stochastic Optimization Approach Applied in a Flux-Cored Arc Welding Process, IEEE Access 8 (2020) 61267-61276. DOI: https://doi.org/10.1109/ACCESS.2020.2983566
- [3] A.F. Torres, F.A. de Almeida, A.P. de Paiva, J.R. Ferreira, P.P. Balestrassi, P. Henrique da Silva Campos, Impact of stochastic industrial variables on the cost optimization of AISI 52100 hardened-steel turning process, The International Journal of Advanced Manufacturing Technology 104 (2019) 4331-4340. DOI: https://doi.org/10.1007/s00170-019-04273-1
- [4] G. Fodor, H.T. Sykora, D. Bachrathy, Stochastic modeling of the cutting force in turning processes, The International Journal of Advanced Manufacturing Technology 111 (2020) 213-226. DOI: https://doi.org/10.1007/s00170-020-05877-8
- [5] X. Zhang, T. Yu, J. Zhao, An analytical approach on stochastic model for cutting force prediction in milling ceramic matrix composites, International Journal of Mechanical Sciences 168 (2020) 105314. DOI: https://doi.org/10.1016/j.ijmecsci.2019.105314
- [6] X. Zhang, T. Yu, P. Xu, J. Zhao, In-process stochastic tool wear identification and its application to the improved cutting force modeling of micro milling, Mechanical Systems and Signal Processing 164 (2022) 108233. DOI: https://doi.org/10.1016/j.ymssp.2021.108233
- [7] A.P. Bochkovskyi, Elaboration of stochastic models to comprehensive evaluation of occupational risks in complex dynamic systems, Journal of Achievements in Materials and Manufacturing Engineering 104/1 (2021) 31-41. DOI: https://doi.org/10.5604/01.3001.0014.8484
- [8] G. Belingardi, M.P. Cavatorta, D.S. Paolino, Composite material components damaged by impact loading: a methodology for the assessment of their residual elastic properties, Journal of Achievements in Materials and Manufacturing Engineering 87/1 (2018) 18-24. DOI: https://doi.org/10.5604/01.3001.0012.0735
- [9] Yu.V. Baranovskiy, L.A. Brakhman, A.T. Gdalevich, Metal cutting modes, handbook, A.D. Korchemkin (ed), NIITavtoprom, 1995.
- [10] M. Afrasiabi, M. Roethlin, H. Klippel, K. Wegener, Meshfree simulation of metal cutting: an updated Lagrangian approach with dynamic refne-ment, International Journal of Mechanical Sciences 160 (2019) 451-466. DOI: https://doi.org/10.1016/j.ijmecsci.2019.06.045
- [11] V.V. Chandrasekaran Finite Element Simulation of Orthogonal Metal Cutting Using Ls Dyna, Ph.D. Thesis, Auburn University, Auburn, 2011.
- [12] G. Liu, C. Huang, R. Su, T. Özel, Y. Liu, L. Xu, 3D FEM simulation of the turning process of stainless steel 17-4PH with differently texturized cutting tools, International Journal of Mechanical Sciences 155 (2019) 417-429. DOI: https://doi.org/10.1016/j.ijmecsci.2019.03.016
- [13] M. Afrasiabi, J. Saelzer, S. Berger, I. Iovkov, H. Klippel, M. Röthlin, A. Zabel, D. Biermann, K. Wegener, A Numerical-Experimental Study on Orthogonal Cutting of AISI 1045 Steel and Ti6Al4V Alloy: SPH and FEM Modeling with Newly Identified Friction Coefficients, Metals 11/11 (2021) 1683. DOI: https://doi.org/10.3390/met11111683
- [14] A.G. Kosilova, R.K. Meshcheryakov (ed), Handbook of a mechanical engineer, Vol. 2, Mashinostroyeniye, Moskva, 1985.
- [15] C.J. Rao, D.N. Rao, P. Srihari, Influence of cutting parameters on cutting force and surface finish in turning operation, Procedia Engineering 64 (2013) 1405-1415. DOI: https://doi.org/10.1016/j.proeng.2013.09.222
- [16] W. Stachurski, S. Midera, B. Kruszynski, Determination of Mathematical Formulae for the Cutting Force F C during the Turning of C45 Steel, Mechanics and Mechanical Engineering 16/2 (2012) 73-79.
- [17] G.I. Granovskiy, V.G. Granovskiy, Metal cutting, Vysshaya shkola, 1985.
- [18] I. Dzh. A. Amarego, R. Kh. Braun, Machining of metals, Mashinostroyeniye, 1977.
- [19] A.L. Vorontsov, N.M. Sultan-Zade, A.Yu. Albagachiev, Development of a new theory of cutting: 6. Determining the basic parameters of cutting, Russian Engineering Research 28 (2008) 571-578. DOI: https://doi.org/10.3103/S1068798X08060129
- [20] D.A. Rychkov, A.S. Yanyushkin, The Methodology of calculation of cutting forces when machining composite materials, IOP Conference Series: Materials Science and Engineering 142 (2016) 012088. DOI: https://doi.org/10.1088/1757-899X/142/1/012088
- [21] Y. Teng, J. Ding, B. Wang, X. Guo, P. Cao, Cutting forces and chip morphology in medium density fiberboard orthogonal cutting, BioResources 9/4 (2014) 5845-5857.
- [22] R.R. Malagi, B.C. Rajesh, Factors influencing cutting forces in turning and development of software to estimate cutting forces in turning, International Journal of Engineering and Innovative Technology 2/1 (2012) 37-43.
- [23] I. Pavlenko, M. Saga, I. Kuric, A. Kotliar, Y. Basova, J. Trojanowska, V. Ivanov, Parameter identification of cutting forces in crankshaft grinding using artificial neural networks, Materials 13/23 (2020) 5357. DOI: https://doi.org/10.3390/ma13235357
- [24] P. Kryvyi, N. Tymoshenko, M. Sharyk, V. Krupa, Influence of random feed on the height of surface microroughnesses during turning or boring, Mashynoznavstvo 195-196/9-10 (2013) 76-83.
- [25] V.R. Kobelnyk, P.D. Kryvyy, Methodology for improving the kinematic accuracy of the feed mechanism of vertical drilling machine, for example model 2H118, Protsesy Mekhanichnoyi Obrobky v Mashynobuduvanni 8 (2010) 99-108.
- [26] R. Rosik, N. Kępczak, M. Sikora, B. Witkowski, R. Wójcik, S. Midera, Surface roughness of the ti-6al-4v eli titanium alloy after the turning process, Archives of Materials Science and Engineering 98/2 (2019) 74-80. DOI: https://doi.org/10.5604/01.3001.0013.4611
- [27] N.E. Stakhniv, L.N. Devin, A.G. Sulima, A study of cutting force variations in turning silumins using round polycrystalline diamond inserts, Journal of Superhard Materials 32 (2010) 356-364. DOI: https://doi.org/10.3103/S1063457610050084
- [28] N.E. Stakhniv, L.N. Devin, I.A. Petrusha, A.S. Osipov, Dynamic phenomena in finish turning of hardened steels with cBN-based tools, Journal of Superhard Materials 31 (2009) 196-202. DOI: https://doi.org/10.3103/S1063457609030071
- [29] H.M. Magid, Experimental study of mild steel cutting process by using the plasma arc method, Journal of Achievements in Materials and Manufacturing Engineering 108/2 (2021) 75-85. DOI https://doi.org/10.5604/01.3001.0015.5066
- [30] K.B. Rathod, D.I. Lalwani, Force Modelling in Orthogonal Cutting Considering Flank Wear Effect, Journal of The Institution of Engineers (India): Series C 99 (2018) 673-679. DOI: https://doi.org/10.1007/s40032-017-0372-z
- [31] J. He, S. Wang, G. Li, Z. Yang, L. Hu, K. Wu, Compilation of NC lathe dynamic cutting force spectrum based on two-dimensional mixture models, The International Journal of Advanced Manufacturing Technology 98 (2018) 251-262. DOI: https://doi.org/10.1007/s00170-018-2067-x
- [32] P. Kryvyi, V. Dzyura, N. Tymoshenko, P. Maruschak, J. Nugaras, O. Prentkovskis, Probability-statistical estimation method of feed influence on as-turned finisz of steels and non-ferrous metals, Metals 8/11 (2018) 965. DOI: https://doi.org/10.3390/met8110965
- [33] P. Kryvyi, V. Dzyura, P. Maruschak, S. Panin, O. Lyashuk, I. Vlasov, Influence of curvature and cross-sectional shape of cylindrical surface formed by turning on its roughness, Arabian Journal for Science and Engineering 45 (2020) 5615-5622. DOI: https://doi.org/10.1007/s13369-020-04512-8
- [34] S. Balamurugan, C. Bala Manikandan, P. Balamurugan, A study on magnetic field assisted laser percussion drilling and its effect on surface integrity, Archives of Materials Science and Engineering 94/1 (2018) 35-40. DOI: https://doi.org/10.5604/01.3001.0012.7806
- [35] D. Sokolov, V. Sobyna, S. Vambol, V. Vambol, Substantiation of the choice of the cutter material and method of its hardening, working under the action of friction and cyclic loading, Archives of Materials Science and Engineering 94/2 (2018) 49-54. DOI: https://doi.org/10.5604/01.3001.0012.8658
- [36] Ya.D. Kolker, Mathematical analysis of the accuracy of mechanical processing, Tekhnika, 1976 (in Russian).
- [37] O. Kallenberg; Probabilistic Symmetries and Invariance Principles, Springer-Verlag, New York, 2005. DOI: https://doi.org/10.1007/0-387-28861-9
- [38] L.M. Chihara, T.C. Hesterberg, Mathematical Statistics with Resampling and R, Second Edition, John Wiley & Sons, Hoboken, 2018.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6eeb8c7c-3491-4188-9f02-12db5b9fa5d0