PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bioleaching potential of local bacteria from gold mine tailings in the Ratatotok Area, Indonesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Our previous study found that Bacillus cereus from the rhizosphere of Syzygium aromaticum (RTKS) exhibited the highest resistance and the best gold bioleaching potential at pH 8. However, this bacteria’s potential requires further investigation. The current study aimed to (1) determine the temperature that supports the effectiveness of B. cereus RTKS in the bioleaching of gold, and (2) test the effectiveness of bioleaching by B. cereus RTKS with variations in Au contents in tailings. The experiment began by growing bacteria in a medium, which was then inoculated into tailing effluent. The experiment was carried out in an Erlenmeyer flask shaken at 120 rpm for 3 weeks. In the first-stage experiment, temperatures of 25°C and 50°C were tested. The optimum temperature obtained in the first stage was then used for the second-stage experiment with variations in Au contents in tailings. After bioleaching, the filtration process was conducted and produced three components, namely pellets containing bacterial cells, supernatants, and residues. Bacteria mentioned above were more effective in bioleaching of gold at a temperature of 50° C than at 25°C, indicated by higher Au extraction in pellets and residues, and Au accumulation which tended to be higher in pellets. In treatments with varying Au concentrations in the tailings, increasing Au content did not lead to higher Au accumulation by B. cereus RTKS. The Au content in the residue was significantly highest in the tailings bioleaching treatment with the highest Au content.
Wydawca
Rocznik
Tom
Strony
201--208
Opis fizyczny
Bibliogr. 31 poz., mapa, tab.
Twórcy
  • Universitas Negeri Yogyakarta, Faculty of Mathematics and Natural Sciences, Department of Biology Education, Jl. Colombo No. 1 Karangmalang (55281), Yogyakarta, Indonesia
  • Universitas Gadjah Mada, Faculty of Engineering, Department of Geological Engineering, Jl. Grafika 2 Bulaksumur (55281), Yogyakarta, Indonesia
autor
  • Universitas Negeri Yogyakarta, Faculty of Mathematics and Natural Sciences, Department of Chemistry Education, Jl. Colombo No. 1 Karangmalang (55281), Yogyakarta, Indonesia
  • Universitas Negeri Yogyakarta, Faculty of Mathematics and Natural Sciences, Department of Biology Education, Jl. Colombo No. 1 Karangmalang (55281), Yogyakarta, Indonesia
  • Universitas Halu Oleo, Faculty of Mathematics and Natural Sciences, Jl. HEA Mokodompit, Kampus Hijau Bumi Tridharma Anduonohu (93561), Kendari, Indonesia
  • PT Sumber Energi Jaya, Jl. Elang Laut, Ruko Boulevard No. 32-33 (14470), Jakarta, Indonesia
Bibliografia
  • Altinkaya, P. et al. (2018) “Effect of biological pretreatment on metal extraction from flotation tailings for chloride leaching,” Minerals Engineering, 129, pp. 47–53. Available at: https://doi.org/10.1016/j.mineng.2018.09.012.
  • Aminian-Dehkordi, J. et al. (2020) “A systems-based approach for Cyanide overproduction by Bacillus megaterium for gold bioleaching enhancement,” Frontiers in Bioengineering and Biotechnology, 8, 528. Available at: https://doi.org/10.3389/fbioe.2020.00528.
  • Aminatun, T. et al. (2024a) “Characteristics of rhizobacteria in potential hyperaccumulator vegetation and their resistance to gold mine tailing stress,” Journal of Water and Land Development, 60, pp. 209–218. Available at: https://doi.org/10.24425/jwld.2024.149122.
  • Aminatun, T. et al. (2024b) “Lithogeochemical characteristics and potential hyperaccumulator identification as phytomining agent at the Ratatotok gold mine, Indonesia,” Journal of Degraded and Mining Lands Management, 11(2), pp. 5353–5360. Available at: https://doi.org/10.15243/jdmlm.2024.112.5251.
  • Azzaman, M.A., Idrus, A. and Titisari, A.D. (2021) “Geology, hydrothermal alteration and mineralization of the Carlin-type gold deposit at South Ratatotok, Southeast Minahasa Regency, North Sulawesi Province, Indonesia,” IOP Conference Series: Earth and Environmental Science, 789, 012076. Available at: https://doi.org/10.1088/1755-1315/789/1/012076.
  • Breed, A.W., Dempers, C.J.N. and Hansford, G.S. (2000) “Studies on the bioleaching of refractory concentrates,” The Journal of The South Institute of Mining and Metalurgy, November/December, pp. 389–398. Available at: http://saimm.org.za/Journal/v100n07p389.pdf (Accessed: December 24, 2024).
  • Cabrales-González, A.M. et al. (2022) “Bioleaching of As from mine tailings using an autochthonous Bacillus cereus strain,” Revista Mexicana de Ingeniera Quimica, 21(2), Bio2723. Available at: https://doi.org/10.24275/rmiq/Bio2723.
  • Chingwaru, S.J., Heyden von der, B., and Tadie, M. (2023) “An underexploited invisible gold resource in the Archean sulphides of the Witwatersrand tailings dumps,” Scientific Reports, 13, 3086. Available at: https://doi.org/10.1038/s41598-023-30219-5.
  • El-Sayed, S. et al. (2021) “Influence of Bacillus cereus-gold interaction on bio-flotation of gold in the presence of potassium butyl xanthate,” Biointerface Research in Applied Chemistry, 11(5), pp. 13005–13018. Available at: https://doi.org/10.33263/BRIAC115.1300513018.
  • Faraji, F. et al. (2021) “A green and sustainable process for the recovery of gold from low-grade sources using biogenic cyanide generated by Bacillus megaterium: A comprehensive study,” ACS Sustainable Chemistry and Engineering, 9(1), pp. 236–245. Available at: https://doi.org/10.1021/acssuschemeng.0c06904.
  • Gani, P.R., Abidjulu, J., and Wuntu, A.D. (2017) “Analisis air limbah pertambangan emas tanpa izin Desa Bakan Kecamatan Lolayan Kabupaten Bolaang Mongondow [Analysis of wastewater from illegal gold mining in Bakan Village, Lolayan District, Bolaang Mongondow Regency],” Jurnal MIPA, 6(2), pp. 6–11. Available at: https://doi.org/10.35799/jm.6.2.2017.16927.
  • Govarthanan, M. et al. (2016) “Bioremediation of heavy metals using an endophytic bacterium Paenibacillus sp. RM isolated from the roots of Tridax procumbens,” 3 Biotech, 6(2), 242. Available at: https://doi.org/10.1007/s13205-016-0560-1.
  • Herlina, L. et al. (2020) “Phytoremediation of lead contaminated soil using croton (Cordiaeum variegatum) plants,” Journal of Ecological Engineering, 21(5), pp. 107–113. Available at: https://doi.org/10.12911/22998993/122238.
  • Hofstra, A.H. and Cline, J.S. (2020) “Characteristics and models for Carlin-type gold deposits,” in S.G. Hagemann and P.E. Brown (eds.) Gold in 2000. Reviews in Economic Geology, 13, pp. 163–220. Available at: https://doi.org/10.5382/rev.13.05.
  • Kampmann, T.C. et al. (2018) “Syntectonic sulphide remobilization and trace element redistribution at the Falun pyritic Zn-Pb-Cu- (Au-Ag) sulphide deposit, Bergslagen, Sweden,” Ore Geology Reviews, 96, pp. 48–71. Available at: https://doi.org/10.1016/j.oregeorev.2018.04.010.
  • Khaing, S.Y., Sugai, Y. and Sasaki, K. (2019) “Gold dissolution from ore with iodide-oxidising bacteria,” Scientific Reports, 9(1), 4178. Available at: https://doi.org/10.1038/s41598-019-41004-8.
  • Kudpeng, K., Thayanukul, P. and Thiravetyan, P. (2021) “Bioleaching of gold from silicate ore by Macrococcus caseolyticus and Acinetobacter calcoaceticus: Effect of medium, amino acids and growth supernatant,” Minerals, 11(6), 580. Available at: https://doi.org/10.3390/min11060580.
  • Kudrin, M.V. et al. (2021) “Article disseminated gold–sulfide mineralization in metasomatites of the khangalas deposit, Yana–Kolyma metallogenic belt (Northeast Russia): Analysis of the texture, geochemistry, and S isotopic composition of pyrite and arsenopyrite,” Minerals, 11(4), 403. Available at: https://doi.org/10.3390/min11040403.
  • Kurniawan, R. et al. (2022) “Identification of potential phytoaccumulator plants from tailings area as a gold phytomining agent,” Journal of Ecological Engineering, 23(1), pp. 169–181. Available at: https://doi.org/10.12911/22998993/143978.
  • Lemos, M. et al. (2023) “Geochemistry and mineralogy of auriferous tailings deposits and their potential for reuse in Nova Lima Region, Brazil,” Scientific Reports, 13(1), 4339. Available at: https://doi.org/10.1038/s41598-023-31133-6.
  • Li, G. et al. (2022) “Macroparticle-enhanced bioleaching of uranium using Aspergillus niger,” Minerals Engineering, 180, 107493. Available at: https://doi.org/10.1016/j.mineng.2022.107493.
  • Muyassaroh, S. and Salami, I.R.S. (2020) “Uji toksisitas sodium sianida (NaCN) PADA beberapa spesies ikan air tawar: Review [The toxicity test of sodium cyanide (NaCN) to some species of freshwater fish: A review],” Jurnal Manusia dan Lingkungan, 25 (1), pp. 1–6. Available at: https://doi.org/10.22146/jml.23117.
  • Phyo, A.K. et al. (2020) “Competitive growth of sulfate-reducing bacteria with bioleaching acidophiles for bioremediation of heap bioleaching residue,” International Journal of Environmental Research and Public Health, 17(8), 2715. Available at: https://doi.org/10.3390/ijerph17082715.
  • Rendón-Castrillón, L. et al. (2023) “Bioleaching techniques for sustainable recovery of metals from solid matrices,” Sustainability, 15(13), 10222. Available at: https://doi.org/10.3390/su151310222.
  • Shang, D. et al. (2015) “Experimental study of Fe3+, Al3+, F− effect on uranium leaching by Aspergillus niger,” in S. Zhou, A. Patty and S. Chen (eds.) Advances in energy science and equipment engineering. Proceedings of International Conference on Energy Equipment Science and Engineering, (ICEESE 2015), May 30–31, 2015, Guangzhou, China. Boca Raton–London–New York– Leiden: CRC Press/Balkema, pp. 479–483.
  • Srichandan, H. et al. (2019) “Bioleaching approach for extraction of metal values from secondary solid wastes: A critical review,” Hydrometallurgy, 189, 105122. Available at: https://doi.org/10.1016/j.hydromet.2019.105122.
  • Villares, M. et al. (2016) “Applying an ex-ante life cycle perspective to metal recovery from e-waste using bioleaching,” Journal of Cleaner Production, 129, pp. 315–328. Available at: https://doi.org/10.1016/j.jclepro.2016.04.066.
  • Wang, Y. et al. (2024) “Hyphae and organic acids of Aspergillus niger promote uranium recovery by destroying the ore surface and increasing the porosity and permeability of ores,” Nuclear Engineering and Technology, 56(5), pp. 1880–1886. Available at: https://doi.org/10.1016/j.net.2023.12.049.
  • Yin, S. et al. (2019) “Research progress in enhanced bioleaching of copper sulfides under the intervention of microbial communities,” International Journal of Minerals, Metallurgy and Materials, 26(11), pp. 1337–1350. Available at: https://doi.org/10.1007/s12613-019-1826-5.
  • Yoon, J. et al. (2006) “Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site,” Science of the Total Environment, 368(2–3), pp. 456–464. Available at: https://doi.org/10.1016/j.scitotenv.2006.01.016.
  • Zhang, Y. et al. (2022) “In situ trace elements and sulfur isotopes of sulfides in the Dabaiyang Te-Au deposit, Hebei Province, China: Implications for Au remobilization from pyrite,” Ore Geology Reviews, 140, 104626. Available at: https://doi.org/10.1016/j.oregeorev.2021.104626.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6eea129a-e546-4af4-b152-7c8bbb8eccf1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.