Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The objective of this study is to comprehensively investigate the printability characteristics of a selective laser melting (SLM) system, which will be achieved through the development of a benchmark test part. In addition, the effect of the build location on the dimensional accuracy and precision of 316 L stainless steel parts produced by SLM was thoroughly evaluated. Design/methodology/approach: The benchmark part was designed using Catia CAD software. Parts were printed using a professional SLM 3D printer and 316L stainless steel powder as a material. Findings: The results showed that to achieve exceptional dimensional accuracy in SLM parts, it is important to select the build location carefully. They also highlighted the critical role of gas distribution control in improving the precision of layer-by-layer deposition. The thorough evaluation of dimensional deviations at different build locations showed that optimal results were consistently achieved at position F within the build cham-ber. Research limitations/implications: Further studies could investigate other factors affecting dimensional variations and surface roughness and enhance the comprehension of the interactions between the process parameters and the building position on the build platform. Originality/value: The paper outlines the creation and production of a benchmark model used to assess the maximum capacity of SLM systems in manufacturing parts with ultimate dimensional precision. The effects of build location on dimensional accuracy are also explored in the given study.
Wydawca
Rocznik
Tom
Strony
75--85
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
- Faculty of Sciences and Techniques, University Abdelmalek Essaâdi, Tangier, Morocco
autor
- Faculty of Sciences and Techniques, University Abdelmalek Essaâdi, Tangier, Morocco
autor
- Faculty of Sciences and Techniques, University Abdelmalek Essaâdi, Tangier, Morocco
autor
- Faculty of Sciences and Techniques, University Abdelmalek Essaâdi, Tangier, Morocco
autor
- Faculty of Sciences and Techniques, University Abdelmalek Essaâdi, Tangier, Morocco
Bibliografia
- [1] D. Zimmer, G. Adam, Direct Manufacturing Design Rules, in: P.J. Bartolo (ed), Innovative Developments in Virtual and Physical Prototyping, CRC Press, Boca Raton, 2011, 545-531.
- [2] S. Bremen, W. Meiners, A. Diatlov, Selective Laser Melting: A Manufacturing Technology for the Future?, Laser Technik Journal 9/2 (2012) 33-38. DOI: https://doi.org/10.1002/latj.201290018
- [3] H.-S. Byun, K.H. Lee, Design of a New Test Part for Bench-marking the Accuracy and Surface Finish of Rapid Prototyping Processes, in: V. Kumar, M.L. Gavrilova, C.J.K. Tan, P. L’Ecuyer (eds), Computational Science and Its Applications — ICCSA 2003, ICCSA 2003. Lecture Notes in Computer Science, vol. 2669, Springer, Berlin, Heidelberg, 2003, 731-740. DOI: https://doi.org/10.1007/3-540-44842-X_74
- [4] L.A. Dobrzański, L.B. Dobrzański, A.D. Dobrzańska-Danikiewicz, Additive and Hybrid Technologies Forproducts Manufacturing Using Powdersof Metals, Their Alloys and Ceramics, Archives of Materials Science and Engineering 102/2 (2020) 59-85. DOI: https://doi.org/10.5604/01.3001.0014.1525
- [5] F. Calignano, M. Lorusso, J. Pakkanen, F. Trevisan, E.P. Ambrosio, D. Manfredi, P. Fino, Investigation of Accuracy and Dimensional Limits of Part Produced in Aluminum Alloy by Selective Laser Melting, The International Journal of Advanced Manufacturing Technology 88/1-4 (2017) 451-458. DOI: https://doi.org/10.1007/s00170-016-8788-9
- [6] W.S.W. Harun, K. Kadirgama, M. Samykano, D. Ramasamy, I. Ahmad, M. Moradi, Mechanical Behavior of Selective Laser Melting-Produced Metallic Biomaterials, in: J.P. Davim (ed), Mechanical Behaviour of Biomaterials, Woodhead Publishing Series in Biomaterials, Woodhead Publishing, Sawston, Cambridge, 2019, 101-116. DOI: https://doi.org/10.1016/B978-0-08-102174-3.00005-X
- [7] G.D. Kim, Y.T. Oh, A Benchmark Study on Rapid Prototyping Processes and Machines: Quantitative Comparisons of Mechanical Properties, Accuracy, Rough-ness, Speed, and Material Cost, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 222/2 (2008) 201-215. DOI: https://doi.org/10.1243/09544054JEM724
- [8] M. Seabra, J. Azevedo, A. Araujo, L. Reis, E. Pinto, N. Alves, R. Santos, J.P. Mortagua, Selective Laser Melting (SLM) and Topology Optimization for Lighter Aerospace Componentes, Procedia Structural Integrity 1 (2016) 289-296. DOI: https://doi.org/10.1016/j.prostr.2016.02.039
- [9] S. Moylan, J. Slotwinski, A. Cooke, K. Jurrens, M.A. Donmez, An Additive Manufacturing Test Artifact, Journal of Research of the National Institute of Standards and Technology 119 (2014) 429-459. DOI: https://doi.org/10.6028/jres.119.017
- [10] L. Rebaioli, I. Fassi, A Review on Benchmark Artifacts for Evaluating the Geometrical Performance of Additive Manufacturing Processes, The International Journal of Advanced Manufacturing Technology 93/5-8 (2017) 2571-2598. DOI: https://doi.org/10.1007/s00170-017-0570-0
- [11] P. Subbaian Kaliamoorthy, R. Subbiah, J. Bensingh, A. Kader, S. Nayak, Benchmarking the Complex Geometric Profiles, Dimensional Accuracy and Surface Analysis of Printed Parts, Rapid Prototyping Journal 26/2 (2019) 319-329. DOI: https://doi.org/10.1108/RPJ-01-2019-0024
- [12] B.S. Rupal, R. Ahmad, A.J. Qureshi, Feature-Based Methodology for Design of Geometric Benchmark Test Artifacts for Additive Manufacturing Processes, Procedia CIRP 70 (2018) 84-89. DOI: https://doi.org/10.1016/j.procir.2018.02.012
- [13] M. Bayat, A. Thanki, S. Mohanty, A. Witvrouw, S. Yang, J. Thorborg, N.S. Tiedje, J.H. Hattel, Keyhole-Induced Porosities in Laser-Based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-Fidelity Modelling and Experimental Validation, Additive Manufacturing 30 (2019) 100835. DOI: https://doi.org/10.1016/j.addma.2019.100835
- [15] K.Z. Ghumman, S. Ali, E.U. Din, A. Mubashar, N.B. Khan, S.W. Ahmed, Experimental Investigation of Effect of Welding Parameters on Surface Roughness, Micro-Hardness and Tensile Strength of AISI 316L Stainless Steel Welded Joints Using 308L Filler Material by TIG Welding, Journal of Materials Research and Technology 21 (2022) 220-236. DOI: https://doi.org/10.1016/j.jmrt.2022.09.016
- [16] S. Pal, N. Gubeljak, T. Boncina, R. Hudak, T. Toth, J. Zivcak, G. Lojen, N. Leben, I. Drstvensek, The Effects of Locations on the Build Tray on the Quality of Specimens in Powder Bed Additive Manufacturing, The International Journal of Advanced Manufacturing Technology 112/3-4 (2021) 1159-1170. DOI: https://doi.org/10.1007/s00170-020-06563-5
- [17] J. Kozhuthala Veetil, M. Khorasani, A.H. Ghasemi, B. Rolfe, I. Vrooijink, K. Van Beurden, S. Moes, I. Gibson, Build Position-Based Dimensional Deviations of Laser Powder-Bed Fusion of Stainless Steel 316L, Precision Engineering 67 (2021) 58-68. DOI: https://doi.org/10.1016/j.precisioneng.2020.09.024
- [18] D. Thomas, The Development of Design Rules for Selective Laser Melting, PhD Thesis, Cardiff Metropolitan University, Cardiff, 2009. DOI: https://doi.org/10.25401/cardiffmet.20974597.v1
- [19] I. Yadroitsev, L. Thivillon, Ph. Bertrand, I. Smurov, Strategy of Manufacturing Components with Designed Internal Structure by Selective Laser Melting of Metallic Powder, Applied Surface Science 254/4 (2007) 980-983. DOI: httpsAdoi.org/10.1016/jjapsusc.2007.08.046
- [20] ISO/ASTM DIS 52904:2019, Additive manufacturing. Process characteristics and performance. Practice for metal powder bed fusion process to meet critical applications, ISO, Geneva, 2019.
- [21] ISO/ASTM 52911-1:2019, Additive manufacturing. Design Part 1: Laser-based powder bed fusion of metals, ISO, Geneva, 2019.
- [22] ISO 12780-1:2011, Geometrical product specifications (GPS). Straightness Part 1: Vocabulary and parameters of straightness, ISO, Geneva, 2011.
- [23] ISO 12780-2:2011, Geometrical product specifications (GPS). Straightness Part 2: Specification operators, ISO, Geneva, 2011.
- [24] ISO 12781-1:2011, Geometrical product specifications (GPS). Flatness Part 1: Vocabulary and parameters of flatness, ISO, Geneva, 2011. ISO 12781-2:2011, Geometrical product specifications (GPS). Flatness Part 2: Specification operators, ISO, Geneva, 2011.
- [25] ISO 12180-1:2011, Geometrical product specifications (GPS). Cylindricity Part 1: Vocabulary and parameters of cylindrical form, ISO, Geneva, 2011.
- [26] ISO 12180-2:2011, Geometrical product specifications (GPS). Cylindricity Part 2: Specification operators, ISO, Geneva, 2011.
- [27] ISO 12181-1:2011, Geometrical product specifications (GPS). Roundness Part 1: Vocabulary and parameters of roundness, ISO, Geneva, 2011.
- [28] ISO 12181-2:2011, Geometrical product specifications (GPS). Roundness Part 2: Specification operators, ISO, Geneva, 2011.
- [29] M. Król, J. Mazurkiewicz, S. Żołnierczyk, Optimization and analysis of porosity and roughness in selective laser melting 316L parts, Archives of Materials Science and Engineering 90/1 (2018) 5-15. DOI: https://doi.org/10.5604/01.3001.0012.0607
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ee5e45e-abdc-4d60-94ff-a5a365525342