Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The gas porosity is one of the most serious problems in the casting of aluminum. There are several degassing methods that have been studied. During smelting of aluminum, the intermetallic compound (IMC) may be formed at the interface between molten aluminum and solid steel of crucible furnace lining. In this study, the effect of degassing treatment on the formations of IMC has been investigated. The rectangular substrate specimens were immersed in a molten aluminum bath. The holding times of the substrate immersions were in the range from 300 s to 1500 s. Two degassing treatments, argon degassing and hexachloroethane tablet degassing, were conducted to investigate their effect on the IMC formation. The IMC was examined under scanning electron microscope with EDX attachment. The thickness of the IMC layer increased with increasing immersion time for all treatments. Due to the high content of hydrogen, substrate specimens immersed in molten aluminum without degasser had IMC layer which was thicker than others. Argon degassing treatment was more effective than tablet degassing to reduce the IMC growth. Furthermore, the hard and brittle phase of IMC, FeAl3, was formed dominantly in specimens immersed for 900 s without degasser while in argon and tablet degasser specimens, it was formed partially.
Czasopismo
Rocznik
Tom
Strony
227--239
Opis fizyczny
Bibliogr. 31 poz., il., rys., tab., wykr.
Twórcy
autor
- Universitas Sebelas Maret, Jl. Ir. Sutami 36 A, 57126 Surakarta, Indonesia
autor
- Universitas Sebelas Maret, Jl. Ir. Sutami 36 A, 57126 Surakarta, Indonesia
autor
- Universitas Sebelas Maret, Jl. Ir. Sutami 36 A, 57126 Surakarta, Indonesia
autor
- Politeknik Manufaktur Ceper Batur, Ceper, Klaten 57465 Jawa, Indonesia
Bibliografia
- [1] Raiszadeh, R. & Griffiths, W.D. (2010). The behavior of double oxide film defects in liquid Al alloys under atmospheric and reduced pressures. Journal of Alloys and Compounds. 491, 575-580.
- [2] Ren, Y., Ma, W., Wei, K., Yu, W., Dai, Y., & Morita, K. (2014). Degassing of aluminum alloys via the electromagnetic directional solidification. Vacuum. 109, 82-85.
- [3] Zhao, L., Pan, Y., Liao, H. & Wang Q. (2012). Degassing of aluminum alloys during re-melting. Materials Letters. 66, 328-331.
- [4] Haghayeghi, R., Bahai, H. & Kapranos, P. (2012). Effect of ultrasonic argon degassing on dissolved hydrogen in aluminum alloy. Materials Letters. 82, 230-232.
- [5] Dispinar, D., Akhtar, S., Nordmark, A., Di Sabatino, M. & Arnberg, L. (2010). Degassing, hydrogen and porosity phenomena in A356. Materials Science and Engineering A. 527, 3719-3725.
- [6] Eisaabadi, B.G., Davami, P., Kim, S.K. & Varahram, N. (2012). Effects of hydrogen and oxides on tensile properties of Al–Si–Mg cast alloys. Materials Science and Engineering A. 552, 36-47.
- [7] Zeng, J., Gu, P. & Wang, Y. (2012). Investigation of Inner Vacuum Sucking method for degassing of molten aluminum, Materials Science and Engineering B. 177, 1717-1720.
- [8] Xu, H., Meek, T.T. & Han, Q. (2007). Effects of ultrasonic field and vacuum on degassing of molten aluminum alloy. Materials Letters. 61, 1246-1250.
- [9] Eskin, G.I. (1998). Prospects of ultrasonic (cavitational) treatment of the melt in the manufacture of aluminum alloy products. Metallurgist. 42, 284-291.
- [10] Wu, R., Qu, Z., Sun, B. & Shu, D. (2007). Effects of spray degassing parameters on hydrogen content and properties of commercial purity aluminum, Materials Science and Engineering A. 456, 386-390.
- [11] Warke, V.S., Tryggvason, G. & Makhlouf, M.M. (2005). Mathematical modeling and computer simulation of molten metal cleansing by the rotating impeller degasser: Part I. Fluid flow. Journal of Materials Processing Technology. 168, 112-118.
- [12] Wang, L., Guo, E., Huang, Y. & Lu, B. (2009). Rotary impeller refinement of 7075Al alloy. Rare Metals. 28, 309-312.
- [13] Samuel, A.M. & Samuel, F.H. (1992). Various aspects involved in the production of low-hydrogen aluminium castings. Journal of Materials Science. 27, 6533-6563.
- [14] Oriani, R.A. (1993). The Physical and Metallurgical Aspects of Hydrogen in Metals. in ICCF4. Fourth International Conference on Cold Fusion. Lahaina, Maui: Electric Power Research Institute 3412 Hillview Ave., Palo Alto, CA 94304.
- [15] Song, R.G., Tseng, M.K., Zhang, B.J., Liu, J., Jin, Z.H. & Shin, K.S. (1996). Grain boundary segregation and hydrogen-induced fracture in 7050 Aluminium alloy. Acta Metall. 44, 3241-3248.
- [16] Shahverdi, H.R., Ghomashchi, M.R., Shabestari, S., & Hejazi, J. (2002). Microstructural analysis of interfacial reaction between molten aluminum and solid iron. Journal of Materials Processing Technology. 124, 345-352.
- [17] Chen, C.M. & Kovacevic, R. (2004). Joining of Al 6061 alloy to AISI 1018 steel by combined effects of fusion and solid state welding. International Journal of Machine Tools & Manufacture. 44, 1205-1214.
- [18] Kobayashi, S. & Yakou, T. (2002). Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment. Materials Science and Engineering A. 338, 44-53.
- [19] Qiu R., Shi, H., Zhang, K., Tu, Y., Iwamoto, C. & Satonaka, S. (2010). Interfacial characterization of joint between mild steel and aluminum alloy welded by resistance spot welding. Materials Characterization. 61, 684-688.
- [20] Tanaka, T., Morishige, T. & Hirata, T. (2009). Comprehensive analysis of joint strength for dissimilar friction stir welds of mild steel to aluminum alloys. Scripta Materialia. 61, 756-759.
- [21] Ogura, T., Saito, Y. Nishida, T., Nishida, H., Yoshida, T., Omichi, N., Fujimoto, M. & Hirose, A. (2012). Partitioning evaluation of mechanical properties and the interfacial microstructure in a friction stir welded aluminum alloy/stainlesssteel lap joint. Scripta Materialia. 66, 531-534.
- [22] Schimek, M., Springer, A., Kaierle, S., Kracht, D. & Wesling, V. (2012). Laser-welded dissimilar steel-aluminum seams for automotive lightweight construction. Physics Procedia. 39, 43-50.
- [23] Uematsu, Y.; Tokaji, K., Tozaki, Y. & Nakashima, Y. (2010). Fatigue behaviour of dissimilar friction stir spot weld betweenA6061 and SPCC welded by a scrolled groove shoulder tool. Procedia Engineering. 2, 193-201.
- [24] Yajiang, L., Juan, W., Yansheng, Y. & Haijun, M. (2005). Diffusity of Al and Fe near the diffusion bonding interface of Fe3Al with low carbon steel. Bull. Mater. Sci. 28(1), 69-74.
- [25] Clementi, E., Raimondi, D.L., Reinhardt, W.P. (1967). Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons, J. Chem. Phys. 47, 1300.
- [26] Shih, T-S, & Wen,K-Y. (2005). Effects of Degassing and Fluxing on the Quality of Al-7%Si and A356.2 Alloys. Materials Transactions. 46(2), 263 - 271.
- [27] Zhang, P. Du, Y., Xing, S., Zhang, L., Zeng, D., Cui, J. & Ba, L. (2002). Influence of Diffusion Time on Steel-Aluminum Solid to Liquid Bonding Interfacial Structure, J. Mater. Sci. Technol. 18(05), 468-470.
- [28] Schiesinger, M.E. (2014). Aluminum Recycling, CRC Press, Taylor and Francis Group, Boca Raton.
- [29] Hatch, J.E. (2005). Aluminum, Properties and Physical Metallurgy, American Society for Metals, tenth printing.
- [30] Lee, H-S., Singh, J.K., Ismail, M.A. & Bhattacharya, C. (2016). Corrosion Resistance Properties of Aluminum Coating Applied by Arc Thermal Metal Spray in SAE J2334 Solution with Exposure Periods. Metals. 6(55), 1-15.
- [31] Esfahani, E.A., Salimijazi, H., Golozar, M.A., Mostaghimi, J. & Pershin, L. (2012). Study of Corrosion Behavior of Arc Sprayed Aluminum Coating on Mild Steel. Journal of Thermal Spray Technology. 21(6), 1195-1202.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ee5590f-5ac4-496d-9cda-2bfc51e7577c