PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Desulfurization of Crude Oil by Laboratory Developed Multipumping Flow Injection Analysis System with Optimization by Response Surface Methodology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sour crude oil is the crude oil that contains a high level of sulfur impurity. It can be toxic and corrosive. Before this lower-quality crude can be processed into other crude oil derivatives, the sulfur content must be reduced, raising the processing cost. A homemade semi-automated multipumping flow analysis system was constructed, consisting of several parts available on the local markets and at low economic costs to decrease the sulfur content of crude oil samples collected. The central composite design (CCD) and response surface methodology (RSM) have been used for modeling and optimization. The effects of the operational parameters, including polar and nonpolar solvent types, solvent flow rates (10–40 ml/min), mixing coil lengths (120–200 min), temperature (30–60 °C), and solvent entry time to the system (0–60 sec) were studied. Experimental and theoretical applications were made to determine the optimal sulfur content, which came out to be 1.438 and 1.395 wt.%, respectively. This system evaluated the effectiveness of the sulfur removal content for actual heavy crude oil by experimentally and theoretically to be 65.73 and 66.75% respectively. The semi-automated system was applied successfully to reduce the sulfur content in a highly sensitive and accurate way.
Rocznik
Strony
328--339
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Department of Chemistry, College of Science/Marshes Research Center, University of Thi-Qar, Thi-Qar, 64001, Iraq
  • Department of Chemistry, College of Science/Marshes Research Center, University of Thi-Qar, Thi-Qar, 64001, Iraq
  • Department of Chemistry, College of Science/Marshes Research Center, University of Thi-Qar, Thi-Qar, 64001, Iraq
Bibliografia
  • 1. Abd Al-Khodor, Y.A., Albayati, T.M. 2020. Employing sodium hydroxide in desulfurization of the actual heavy crude oil: Theoretical optimization and experimental evaluation. Process Safety and Environmental Protection, 136, 334–342. https://doi.org/10.1016/j.psep.2020.01.036.
  • 2. Abdulrazzaq Hadi, A., Abdulkhabeer Ali, A. 2022. A review of petroleum emulsification types, formation factors, and demulsification methods. Materials Today: Proceedings, 53, 273–279. https://doi.org/10.1016/j.matpr.2022.01.091
  • 3. Adlakha, J. et al. 2016. Optimization of conditions for deep desulfurization of heavy crude oil and hydrodesulfurized diesel by Gordonia sp. IITR100. Fuel, 184, 761–769. https://doi.org/10.1016/j.fuel.2016.07.021
  • 4. Aghaei, A., Shahhosseini, S., Sobati, M.A. 2020. Regeneration of different extractive solvents for the oxidative desulfurization process: An experimental investigation. Process Safety and Environmental Protection, 139, 191–200. https://doi.org/10.1016/j.psep.2020.04.013
  • 5. Ahmed, O.U. et al. 2015. Optimum performance of extractive desulfurization of liquid fuels using phosphonium and pyrrolidinium-based ionic liquids. Industrial and Engineering Chemistry Research, 54(25), 6540–6550. https://doi.org/10.1021/acs.iecr.5b01187
  • 6. Al Otaibi, R.L., Liu, D., Hou, X., Song, L., Li, Q., Li, M., Yan, Z. 2015. Desulfurization of Saudi Arabian crudes by oxidation–extraction method. Applied Petrochemical Research, 5(4), 355–362. https://doi.org/10.1007/s13203-015-0112-3
  • 7. Al-Yasiri, A.A., Khathi, M.T. 2016. A comparative study of Iraqi crude oil taken from the Nasiriyah refinery with various local and global crude oils. J.Thi-Qar Sci., 6(1), 70–77.
  • 8. Awadh, S.M., Al-Mimar, H. 2015. Statistical analysis of the relations between API, specific gravity, and sulfur content in the universal crude oil. International Journal of Science and Research, 4(5), 1279-1284.
  • 9. Chand, A. et al. The prodigious hydrogen bonds with sulfur and selenium in molecular assemblies, structural biology, and Functional Materials. Accounts of Chemical Research, 53(8), 1580–1592. https://doi.org/10.1021/acs.accounts.0c00289
  • 10. Chen, K., Zhao, J., Li, X., Gurzadyan, G.G. 2019. Anthracene–Naphthalenediimide compact electron donor/acceptor dyads: Electronic coupling, electron transfer, and intersystem crossing. The Journal of Physical Chemistry A, 123(13). 2503–2516. https://doi.org/10.1021/acs.jpca.8b11828
  • 11. Corilo, Y.E., Rowland, S.M., Rodgers, R.P. 2016. Calculation of the total sulfur content in crude oils by positive-ion atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry. Energy and Fuels, 30(5), 3962–3966. https://doi.org/10.1021/acs.energyfuels.6b00497
  • 12. Demirbas, A. 2016. Sulfur removal from crude oil using supercritical water. Petroleum Science and Technology, 34(7), 622-626. https://doi.org/10.1080/10916466.2016.1154871.
  • 13. Demirbas, A., Alidrisi, H., Balubaid, M.A. 2014. API gravity, sulfur content, and desulfurization of crude oil. Petroleum Science and Technology, 33(1), 93–101. https://doi.org/10.1080/10916466.2014.950383
  • 14. Ebrahimi-Najafabadi, H., Leardi, R., Jalali-Heravi, M. 2014. Experimental design in analytical chemistry – part I: Theory. Journal of AOAC International, 97(1), 3–11. https://doi.org/10.5740/jaoacint.sgeebrahimi1
  • 15. Gunady, I.E., et al. Velocity and concentration field measurements and large eddy simulation of a shaped film cooling hole. International Journal of Heat and Fluid Flow, 90, 108837. https://doi.org/10.1016/j.ijheatfluidflow.2021.108837
  • 16. Hamidi Zirasefi, M., Khorasheh, F., Ivakpour, J., Mohammadzadeh, A. 2016. Improvement of the thermal cracking product quality of heavy Vacuum Residue Using Solvent Deasphalting Pretreatment. Energy and Fuels, 30(12), 10322–10329. https://doi.org/10.1021/acs.energyfuels.6b02297
  • 17. Haruna, S.Y., et al. 2018. Comparative studies on reduction of sulphur content of heavy crude oil using KMnO4+H2O2/CH3COOH and KMnO4+ H2O2/HCOOH via oxidative desulphurization (ODS). American Journal of Applied Chemistry, 6(1), 15–24.
  • 18. Houda, S., Lancelot, C., Blanchard, P., Poinel, L., Lamonier, C. 2018. Oxidative desulfurization of heavy oils with high sulfur content: A Review. Catalysts, 8(9), 344–369. https://doi.org/10.3390/catal8090344
  • 19. Huang, B.S. et al. 2012. Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit. Applied Surface Science, 259, 664–670. https://doi.org/10.1016/j.apsusc.2012.07.094
  • 20. Kondyli, A., Schrader, W. 2021. Study of crude oil fouling from sulfur-containing compounds using high-resolution mass spectrometry. Energy and Fuels, 35(16), 13022–13029. https://doi.org/10.1021/acs.energyfuels.1c01136
  • 21. Mohammed, A.H.A., Kheder, M.J.Y. 2009. The effect of extraction temperature and solvent to oil ratio on viscosity index of mixed-medium lubricating oil fraction by using solvents extraction. Iraqi Journal of Chemical and Petroleum Engineering, 10(2), 13–18.
  • 22. Mook, W.T. et al. 2013. The application of nanocrystalline PbO2 as an anode for the simultaneous bio-electrochemical denitrification and organic matter removal in an up-flow undivided reactor. Electrochimica Acta, 94, 327–335. https://doi.org/10.1016/j.electacta.2013.02.001
  • 23. Mottaghi, H., Mohammadi, Z., Abbasi, M., Tahouni, N., Panjeshahi, M.H. 2021. Experimental investigation of crude oil removal from water using polymer adsorbent. Journal of Water Process Engineering, 40, 101959. https://doi.org/10.1016/j.jwpe.2021.101959
  • 24. Nagham, A.S., Dhorgham, S.I. 2019. Sulfur removal of crude oil using combinations of oxidation extraction and oxidation–adsorption systems. Petroleum and Coal, 61(5), 1219–1225.
  • 25. Peralta, D. et al. 2012. Metal–organic framework materials for desulfurization by adsorption. Energy and Fuels, 26(8), 4953–4960. https://doi.org/10.1021/ef300762z
  • 26. Saha, B., Vedachalam, S., Dalai, A.K. 2021. Review on recent advances in adsorptive desulfurization. Fuel Processing Technology, 214, 106685. https://doi.org/10.1016/j.fuproc.2020.106685
  • 27. Song, H. et al. 2014. Equilibrium, kinetic, and thermodynamic studies on adsorptive desulfurization onto CuICeIVY zeolite. Industrial and Engineering Chemistry Research, 53(14), 5701–5708. https://doi.org/10.1021/ie403177t.
  • 28. Tang, X.-dong et al. 2015. Deep extractive desulfurization with Arenium ion deep eutectic solvents. Industrial and Engineering Chemistry Research, 54(16), 4625–4632. https://doi.org/10.1021/acs.iecr.5b00291.
  • 29. Tavan, Y., Farhadi, F. and Shahrokhi, M. 2021. Kinetic modeling and simulation study for a sequential electrochemical extractive crude diesel desulfurization. Separation and Purification Technology, 278, 119587. https://doi.org/10.1016/j.seppur.2021.119587.
  • 30. Vetere, A., Pröfrock, D. and Schrader, W. 2017. Quantitative and qualitative analysis of three classes of sulfur compounds in crude oil. Angewandte Chemie International Edition, 56(36), 10933–10937. https://doi.org/10.1002/anie.201703205.
  • 31. Yahaya, A., and Abubakar, M. (2022). A Review on Desulfurization of Kerosene using Ionic Liquids as Catalysts. International Journal of Science for Global Sustainability, 8(2), 10–10.
  • 32. Zarei, M. et al. 2010. Application of response surface methodology for optimization of peroxicoagulation of textile dye solution using carbon nanotube–PTFE cathode. Journal of Hazardous Materials, 173(1–3), 544–551. https://doi.org/10.1016/j.jhazmat.2009.08.120.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ee297c0-9ef0-4da5-b47c-9e4efb4747a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.