PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Non-probabilistic Solutions of Uncertain Fractional Order Diffusion Equations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates the numerical solution of uncertain fractional order diffusion equation subject to various external forces. Homotopy Perturbation Method (HPM) is used for the analysis. Uncertainties present in the system are modelled through triangular convex normalised fuzzy sets. A new computational technique has been proposed based on double parametric form of fuzzy numbers to handle the fuzzy fractional diffusion equation. Using the single parametric form of fuzzy numbers, the original fuzzy fractional diffusion equation is converted first to an interval fuzzy fractional differential equation. Next this equation is transformed to crisp form by applying double parametric form of fuzzy numbers. Finally the same is solved by HPM symbolically to obtain the uncertain bounds of the solution. Obtained results are depicted in term of plots. Results obtained by the proposed method are compared with existing results in special cases.
Wydawca
Rocznik
Strony
19--34
Opis fizyczny
Bibliogr. 66 poz., rys., wykr.
Twórcy
autor
  • Department of Mathematics, National Institute of Technology Rourkela, Odisha - 769 008, India
  • Department of Mathematics, National Institute of Technology Rourkela, Odisha - 769 008, India
Bibliografia
  • [1] S. Abbasbandy, A. Shirzadi, Homotopy analysis method for multiple solutions of the fractional Sturm-Liouville problems, Numer. Alg. 54(2010), 521-532.
  • [2] S. Abbasbandy, T. Allahviranloo, Numerical solution of fuzzy differential equation by Runge-Kutta method, Nonlinear Stud. 11(2004), 117-29.
  • [3] R. P. Agarwal, V. Lakshmikantham, J. J. Nieto, On the concept of solution for fractional differential equationswith uncertainty, Nonlinear Anal: Theory,Methods Appl. 72(2010), 2859-2862.
  • [4] A. Ahmadian,M. Suleiman, S. Salahshour, D. Baleanu, A Jacobi operational matrix for solving a fuzzy linear fractional differential equation, Advances in Difference Equations 2013(2013), 1-29.
  • [5] S. Arshad, V. Lupulescu, Fractional differential equation with the fuzzy initial condition, Electron J. Differ.Equ. 2011(2011), 1-8.
  • [6] S. Arshad, V. Lupulescu, On the fractional differential equations with uncertainty Nonlinear Anal. 74(2011),3685-3693.
  • [7] D. Behera, S. Chakraverty, Numerical solution of fractionally damped beam by homotopy perturbation method, Cent. Eur. J. Phys. 11(2013), 792-798.
  • [8] D. Behera, S. Chakraverty, Uncertain impulse response of imprecisely defined half order mechanical system, Annals Fuzzy Math Inform. 7(2014), 401-419.
  • [9] A. Cetinkaya, O. Kiymaz, The solution of the time-fractional diffusion equation by the generalized differential transform method, Math. Comput. Model 57(2013), 2349-2354.
  • [10] S. Chakraverty, D. Behera, Dynamic responses of fractionally damped mechanical system using homotopy perturbation method, Alexandria Eng. J. 52(2013), 557-562.
  • [11] Y. Chalco-Cano, H. Roman-Flores, On new solutions of fuzzy differential equations, Chaos, Solitons Fractals38 (2008), 112-119.
  • [12] Y. M. Chen, Y.B. Wu, Wavelet method for a class of fractional convection-diffusion equation with variable coefficients, J. Comput. Sci. 1(2010), 146-149.
  • [13] A. M. A. El-Sayed, I. L. El-Kalla, E. A. A. Ziada, Analytical and numerical solutions of multi-term nonlinear fractional orders differential equations, Appl. Numer. Math. 60(2010), 788-797.
  • [14] M. Garg, P. Manohar, Numerical solution of fractional diffusion-wave equation with two space variables by matrix method, Fract. Calc. Appl. Anal. 13(2010), 191-207.
  • [15] M. A. Godal, A. Salah, M. Khan, S. I. Batool, A novel analytical solution of a fractional diffusion problem by homotopy analysis transform method, Neural Comput. Applic. 23(2013), 1643-1647.
  • [16] R. Gorenflo, Y. Luchko, F. Mainardi, Wright functions as scale-invariant solutions of the diffusion-wave equation, J. Comput. Appl. Math. 118(2000), 175-191.
  • [17] M. Hanss, Applied Fuzzy Arithmetic: An Introduction with Engineering Applications, Berlin: Springer-Verlag (2005).
  • [18] I. Hashim, O. Abdulaziz, S. Momani, Homotopy analysis method for fractional ivps, Commun. Nonlinear Sci. Numer. Simul. 14(2009), 674-684.
  • [19] J. H. He, Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng. 178(1999), 257-262.
  • [20] J. H. He, A coupling method of homotopy technique and perturbation technique for nonlinear problems, Int.J. Non-linear Mech. 35(2000), 37-43.
  • [21] J. H. He, Homotopy perturbation method: a new nonlinear analytical technique, Appl. Math. Comput.135(2003), 73-79.
  • [22] J. H. He, Homotopy perturbation method for bifurcation of nonlinear problems, Int. J. Nonlin. Sci. Numer. Simul. 6(2005), 207-208.
  • [23] J. H. He, Homotopy perturbation method for solving boundary value problems, Phys. Lett. A 350(2006),87-88.
  • [24] S. H. Hosseinnia, A. Ranjbar and S. Momani, Using an enhanced homotopy perturbation method in fractional differential equations via deforming the linear part, Comput. Math. Appl. 56(2008), 3138-3149.
  • [25] L. Jaulin, M. Kieffer, O. Didrit, E. Walter, Applied Interval Analysis, France: Springer (2001).
  • [26] J. U. Jeong, Existence results for fractional order fuzzy differential equations with infinite delay, Int. Math Forum 5(2010), 3221-3230.
  • [27] L. Jian-Guo, Z. Zhifang, Extended generalized hyperbolic-function method and new exact solutions of the generalized Hamiltonian and NNV equations by the symbolic computation, Fund. Inform. 132(4) 2014, 501-517.
  • [28] A. Khastan, K. Ivaz, Numerical solution of fuzzy differential equations by nystrom method, Chaos, Solitons Fractals 41(2009), 859-868.
  • [29] E. Khodadadi, E. Celik, The variational iteration method for fuzzy fractional differential equations with uncertainty, Fixed Point Theory Appl. 2013(2013), 1-7.
  • [30] V. S. Kiryakova, Generalized Fractional Calculus and Applications, Longman Scientific Technical. England, Longman House: Burnt Mill, Harlow (1993).
  • [31] Y. Lin, C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys. 225(2007), 1533-1552.
  • [32] X. Li, M. Xu, X. Jiang, Homotopy perturbation method to time-fractional diffusion equation with a moving boundary condition, Appl. Math. Comput. 208 (2009), 434-439.
  • [33] V. E. Lynch, B. A. Carreras, D. del-Castillo-Negrete, K.M. Ferreira-Mejias, H. R. Hicks, Numerical methods for the solution of partial differential equations of fractional order, J. Comput. Phys. 192(2003), 406-421.
  • [34] F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Soliton Fract.7(1996), 1461-1477.
  • [35] F. Mainardi, G. Pagnini, The wright functions as solutions of the time-fractional diffusion equation, Appl.Math. Comput. 141(2003), 51-62.
  • [36] M. M. Meerschaert, C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math. 56(2006), 80-90.
  • [37] M. Merdan, Analytical approximate solutions of fractional convection-diffusion equation with modified Riemann-Liouville derivative by means of fractional variational iteration method, Iranian J. Sci. Technol.A 1(2013), 83-92.
  • [38] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, New York: John Wiley and Sons (1993).
  • [39] O. H. Mohammed, F. S. Fadhel, F. A. Abdul-Khaleq, Differential transform method for solving fuzzy fractional initial value problems, J. Basrah Researches (Science), 37(2011), 158-170.
  • [40] S. T.Mohyud-Din, A. Yildirim and E. Yuluklu, Homotopy analysis method for space-and time-fractional kdv equation, Int. J. Numer. Methods. Heat Fluid Flow 22 (2012), 928-941.
  • [41] S. T. Mohyud-Din, A. Yildirim, An algorithm for solving the fractional vibration equation, Comput. Math. Modeling. 23(2012), 228-237.
  • [42] R. Y. Molliq, M. S. M. Noorani, I. Hashim, Variational iteration method for fractional heat and wave-like equations, Nonlinear Anal.: Real World Appl. 10(2009), 1854-1869.
  • [43] S. Momani, General solutions for the space-and time-fractional diffusion-wave equation, J. Physical Sci.10(2006), 30-43.
  • [44] J. Nieto Juan, R. Rodriguez-Lopez, Bounded solutions for fuzzy differential and integral equations, Chaos, Solitons Fractals 27(2006), 1376-1386.
  • [45] Z. Odibat, S. Momani, A generalized differential transform method for linear partial differential equations of fractional order, Appl. Math. Lett. 21(2008), 194-199.
  • [46] Z.M. Odibat, Rectangular decomposition method for fractional diffusion-wave equations, Appl. Math. Comput.179(2006), 92-97.
  • [47] K. B. Oldham, J. Spanier, The Fractional Calculus, New York: Academic Press (1974).
  • [48] I. Petras, Fractional-Order Nonlinear Systems Modeling, Analysis and Simulation, London New York:Springer Heidelberg Dordrecht (2011).
  • [49] I. Podlubny, Fractional Differential Equations, New York: Academic Press (1999).
  • [50] T. J. Ross, Fuzzy Logic with Engineering Applications, New York: JohnWiley Sons (2004).
  • [51] M. Safari, M. Danesh, Application of adomian’s decomposition method for the analytical solution of space fractional diffusion equation, Adv. Pure. Math. 1(2011), 345-350.
  • [52] A. Salah, M. Khan, M. A. Gondal, A novel solution procedure for fuzzy fractional heat equations by homotopy analysis transform method, Neural Comput. Applic. 23(2013), 269-271.
  • [53] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives-Theory and Applications, Langhorne, PA: Gordon and Breach Science Publishers (1993).
  • [54] D. Slota, Homotopy Perturbation method for solving the two phase inverse Stefan problem, Num.l Heat Transfer Part A 59(2011), 755-768.
  • [55] S. Tapaswini, S. Chakraverty, A new approach to fuzzy initial value problem by improved Euler method, Int. J. Fuzzy Inf. Eng. 4(2012), 293-312.
  • [56] S. Tapaswini, S. Chakraverty, Numerical solution of uncertain beam equations using double parametric form of fuzzy numbers, Appl. Comput. Intell. Soft Comput. 2013(2013), 1-8.
  • [57] S. Tapaswini, S. Chakraverty, Numerical solution of n-th order fuzzy linear differential equations by homotopy perturbation method, Int. J. Computer Appl. 64(2013), 5-10.
  • [58] S. Tapaswini, S. Chakraverty, Euler based new solution method for fuzzy initial value problems, Int. J. ArtificialIntell. Soft Comput. 4(2014), 58-79.
  • [59] Q.Wang, Homotopy perturbationmethod for fractional kdv equation, Appl.Math. Comput. 190(2007), 1795-1802.
  • [60] Q. Wang, Homotopy perturbation method for fractional kdv-burgers equation, Chaos Solitons Fractals 35(2008), 843-850.
  • [61] H. Wang, Y. Liu, Existence results for fractional fuzzy differential equations with finite delay, Int. Math Forum 6(2011), 2535-2538.
  • [62] G. C. Wu, D. Baleanu, Variational Iteration method for fractional calculus-a universal approach by laplace transform, Adv. Difference Equ. 2013(2013), 1-19.
  • [63] A. Yildirim, H. Kocak, Homotopy perturbation method for solving the space-time fractional advection-dispersion equation, Adv.Water Resources 32(2009), 1711-1716.
  • [64] A. Yildirim, An algorithm for solving the fractional nonlinear schrdinger equation by means of the homotopy perturbation method, Int. J. Nonlin. Sci. Numer. Simul. 10(2009), 445-450.
  • [65] S. B. Yuste, J. Quintana-Murillo, A finite difference method with non-uniform time steps for fractional diffusion quations, Comput. Phys. Comm. 183(2012), 2594-2600.
  • [66] H. J. Zimmermann, Fuzzy Set Theory and its Application, Boston/Dordrecht/London: Kluwer Academic Publishers (2001).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6edfcdc9-0b02-4f69-8d1a-1ceafacede7f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.