PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Permeability Evolution and Rock Brittle Failure

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper reports an experimental study of the evolution of permeability during rock brittle failure and a theoretical analysis of rock critical stress level. It is assumed that the rock is a strain-softening medium whose strength can be described by Weibull’s distribution. Based on the two-dimensional renormalization group theory, it is found that the stress level λ c (the ratio of the stress at the critical point to the peak stress) depends mainly on the homogeneity index or shape parameter m in the Weibull’s distribution for the rock. Experimental results show that the evolution of permeability is closely related to rock deformation stages: the permeability has a rapid increase with the growth of cracks and their surface areas (i.e., onset of fracture coalescence point), and reaches the maximum at rock failure. Both the experimental and analytical results show that this point of rapid increase in permeability on the permeabilitypressure curve corresponds to the critical point on the stress-strain curve; for rock compression, the stress at this point is approximately 80% of the peak strength. Thus, monitoring the evolution of permeability may provide a new means of identifying the critical point of rock brittle fracture.
Czasopismo
Rocznik
Strony
978--999
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
  • School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, China
autor
  • Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
autor
  • School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, China
Bibliografia
  • [1] Allègre, C.J., J.L. Le-Mouel, and A. Provost (1982), Scaling rules in rock fracture and possible implications for earthquake prediction, Nature 297, 5861, 47-49, DOI: 10.1038/297047a0.
  • [2] Anifrani, J.-C., C. Le Floch, D. Sornette, and B. Souillard (1995), Universal logperiodic correction to renormalization group scaling for rupture stress pre diction from acoustic emissions, J. Phys. I France 5, 6, 631-638, DOI: 10.1051/jp1:1995156.
  • [3] Brace, W.F., J.B. Walsh, and W.T. Frangos (1968), Permeability of granite under high pressure, J. Geophys. Res. 73, 6, 2225-2236, DOI: 10.1029/ JB073i006p02225.
  • [4] David, C., B. Menendez, W. Zhu, and T.F. Wong (2001), Mechanical compaction, microstructures and permeability evolution in sandstones, Phys. Chem.Earth A, 26, 1-2, 45-51, DOI: 10.1016/S1464-1895(01)00021-7.
  • [5] Jiang, Z., L. Ji, R. Zuo, and L. Cao (2002), Correlativity among rock permeability and strain, stress under servo-control condition, Chin. J. Rock Mech. Eng. 21, 10, 1142-1446 (in Chinese).
  • [6] Liu, H.L., T.H. Yang, Q.L. Yu, and S.-K. Chen (2009), Experimental study on fluid permeation evolution in whole failure process of tuff, J. Northeast. Univ. (Nat. Sci.) 30, 7, 1030-1033 (in Chinese).
  • [7] Lock, P.A., X. Jing, and R.W. Zimmerman (2002) Predicting the permeability of sandstone from image analysis of pore structure, J. Appl. Phys. 92, 10, 6311-6319, DOI: 10.1063/1.1516271.
  • [8] Lockner, D.A., J.D. Byerlee, V. Kuksenko, A. Ponomarev, and A. Sidorin (1992), Observations of quasistatic fault growth from acoustic emissions. In: B. Evans, and T.F. Wong (eds.), Fault Mechanics and Transport Properties of Rocks, International Geophysics, Vol. 51, Academic Press, New York, 3-31, DOI: 10.1016/S0074-6142(08)62813-2.
  • [9] Martin, C.D. (1993), The strength of massive Lac du Bonnet granite around underground openings, Ph.D. Thesis, University of Manitoba, Manitoba, Canada.
  • [10] Martin, C.D. (1997) Seventeenth Canadian Geotechnical Colloquium: The effect of cohesion loss and stress path on brittle rock strength, Can. Geotech. J. 34, 5, 698-725, DOI: 10.1139/t97-030.
  • [11] Mordecai, M., and L.H. Morris (1971), Investigation into the changes of permeability occurring in a sandstone when failed under triaxial stress conditions. In: G.B. Clark (ed.), Dynamic Rock Mechanics (Proc. 12th Ann. Rock Mech. Symp., 16 November 1970, Rolla, USA), AIME, New York, 221-239.
  • [12] Paterson, M.S. (1978), Experimental Rock Deformation - The Brittle Field, Minerals and Rocks, Springer, Berlin Heidelberg.
  • [13] Paterson, M.S., and T.F. Wong (2005), Experimental Rock Deformation - The Brittle Field, 2nd ed., Springer, Berlin Heidelberg, 347 pp.
  • [14] Qin, S.Q., Y.Y. Wang, and P. Ma (2010a), Exponential laws of critical displacement evolution for landslides and avalanches, Chin. J. Rock Mech. Eng. 29, 5, 873-880, DOI: 1000-6915(2010)05-0873-08 (in Chinese).
  • [15] Qin, S.Q., X.W. Xu, P. Hu, Y.Y. Wang, X. Huang, and X.H. Pan (2010b), Brittle failure mechanism of multiple locked patches in a seismogenic fault and exploration of a new approach to earthquake prediction, Chin. J. Geophys. 53, 4, 1001-1014, DOI: 10.3969/j.issn.0001-5733.2010.04.02 (in Chinese).
  • [16] Smalley, R.F., D.L. Turcotte, and S.A. Solla (1985), A renormalization group approach to the stick‐slip behavior of faults, J. Geophys. Res. 90, B2, 1894-1900, DOI: 10.1029/JB090iB02p01894.
  • [17] Sornette, D. (2000), Critical Phenomena in Natural Sciences. Chaos, Fractals, Selforganization and Disorder: Concepts and Tools, Springer series in synergetics, Springer, Berlin Heidelberg.
  • [18] Sornette, D., and J.V. Andersen (1998), Scaling with respect to disorder in time-tofailure, Eur. Phys. J. B 1, 3, 353-357, DOI: 10.1007/s100510050194.
  • [19] Sulem, J., and H. Ouffroukh (2006), Shear banding in drained and undrained triaxial tests on a saturated sandstone: Porosity and permeability evolution, Int. J. Rock Mech. Min. Sci. 43, 2, 292-310, DOI: 10.1016/j.ijrmms.2005.07.001.
  • [20] Sun, Q., Z.Q. Jiang, and S.Y. Zhu (2012), Experimental study on permeability of soft rock of Beizao Coal Mine, Chin. J. Geotech. Eng. 34, 3, 540-545, DOI: 1000-4548(2012)03-0540-06 (in Chinese).
  • [21] Tang, C.A., H. Liu, P.K.K. Lee, Y. Tsui, and L.G. Tham (2000), Numerical studies of the influence of microstructure on rock failure in uniaxial compression - Part I: effect of heterogeneity, Int. J. Rock Mech. Min. Sci. 37, 4, 555-569, DOI: 10.1016/S1365-1609(99)00121-5.
  • [22] Walsh, J.B., and W.F. Brace (1984), The effect of pressure on porosity and the transport properties of rock, J. Geophys. Res. 89, B11, 9425-9431, DOI: 10.1029/JB089iB11p09425.
  • [23] Wang, H.L., W.Y. Xu, and S.Q. Yang (2006), Experimental investigation on permeability evolution law during course of deformation and failure of rock specimen, Rock Soil Mech. 27, 10, 1703-1708 (in Chinese).
  • [24] Wong, T.F., C. David, and W. Zhu (1997), The transition from brittle faulting to cataclastic flow in porous sandstones: Mechanical deformation, J. Geophys. Res. 102, B2, 3009-3025, DOI: 10.1029/96JB03281.
  • [25] Wong, T.F., R.H.C. Wong, K.T. Chau, and C.A. Tang (2006), Microcrack statistics, Weibull distribution and micromechanical modeling of compressive failure in rock, Mech. Mater. 38, 7, 664-681, DOI: 10.1016/j.mechmat.2005.12. 002.
  • [26] Xue, L. (2014), A potential stress indicator for failure prediction of laboratory-scale rock samples, Arab. J. Geosci., DOI: 10.1007/s12517-014-1456-1.
  • [27] Yang, Y.J., J. Chu, D.Z. Huan, and L. Li (2008), Experimental of coal’s strainpermability rate under solid and liquid coupling condition, J. China Coal Soc. 33, 7, 760-764, DOI: 10.3321/j.issn:0253-9993.2008.07.008 (in Chinese).
  • [28] Zhang, R., Z.Q. Jiang, Q. Sun, and S.Y. Zhu (2013), The relationship between the deformation mechanism and permeability on brittle rock, Nat. Hazards 66, 2, 1179-1187, DOI: 10.1007/s11069-012-0543-4.
  • [29] Zhu, W., and T.F. Wong (1996), Permeability reduction in a dilating rock: Network modeling of damage and tortuosity, Geophys. Res. Lett. 23, 22, 3099-3102, DOI: 10.1029/96GL03078.
  • [30] Zhu, W., and T.F. Wong (1997), The transition from brittle faulting to cataclastic flow: Permeability evolution, J. Geophys. Res. 102, B2, 3027-3041, DOI: 10.1029/96JB03282.
  • [31] Zhu, W., and T.F. Wong (1999), Network modeling of the evolution of permeability and dilatancy in compact rock, J. Geophys. Res. 104, B2, 2963-2971, DOI: 10.1029/1998JB900062.
  • [32] Zoback, M.D., and J.D. Byerlee (1975a), Permeability and effective stress, Bull. Am. Assoc. Petrol. Geol. 59, 154-158.
  • [33] Zoback, M.D., and J.D. Byerlee (1975b), The effect of microcrack dilatancy on the permeability of westerly granite, J. Geophys. Res. 80, 5, 752-755, DOI: 10.1029/JB080i005p00752
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6edf5ce3-7656-45f1-b542-1fea4e33946b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.