PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Shapes of an air Taylor bubble in stagnant liquids influenced by different surface tensions

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work is to propose an empirical model for predicting shapes of a Taylor bubble, which is a part of slug flows, under different values of the surface tension in stagnant liquids by employing numerical simulations. The k - turbulence model was used in the framework of finite volume method for simulating flow fields in a unit of slug flow and also the pressure distribution on a Taylor bubble surface. Assuming that an air pressure distribution inside the Taylor bubble must be uniform, a grid search method was exploited to find an appropriate shape of a Taylor bubble for six values of surface tension. It was found that the shape of a Taylor bubble would be blunter if the surface tension was increased. This was because the surface tension affected the Froude number, controlling the flow around a Taylor bubble. The simulation results were also compared with the Taylor bubble shape, created by the Dumitrescu-and-Taylor model and former studies in order to ensure that they were consistent. Finally, the empirical model was presented from the simulation results.
Rocznik
Strony
79--90
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, Faculty of Engineering Chulalongkorn University, Bangkok, 10330 THAILAND
Bibliografia
  • [1] Grace J.R. and Clift R. (1979): Dependence of slug rise velocity on tube Reynolds number in vertical gas-liquid flow. - Chemical Engineering Science, vol.34, pp.1348-1350.
  • [2] Polonsky S., Shemer L. and Barnea D. (1999): The relation between the Taylor bubble motion and the velocity field ahead of it. - International Journal of Multiphase Flow, vol.25, pp. 957-975.
  • [3] Hayashi K., Kurimoto R. and Tomiyama A. (2011): Terminal velocity of a Taylor drop in a vertical pipe. - International Journal of Multiphase Flow, vol.37, pp.241-251.
  • [4] White E.T. and Beardmore R.H. (1962): The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes. - Chemical Engineering Science, vol.17, No. 5, pp.351-361.
  • [5] Barnea D. (1990): Effect of bubble shape on pressure drop calculations in vertical slug flow. - International Journal of Multiphase Flow, vol.16, No.1, pp.79-89.
  • [6] Tudose E.T. and Kawaji M. (1999): Experimental investigation of Taylor bubble acceleration mechanism in slug flow. - Chemical Engineering Science, vol.54, pp.5761-5775.
  • [7] Sotiriadis A.A. and Thorpe R.B. (2005): Liquid re-circulation in turbulent vertical pipe flow behind a cylindrical bluff body and ventilated cavity attached to a Sparger. - Chemical Engineering Science, vol.60, pp.981-994.
  • [8] Lertnuwat B. and Bunyajitradulya A. (2007): Effects of interfacial shear condition and trailing-corner radius on the wake vortex of a bubble. - Nuclear Engineering and Design, vol.237, No.14, pp.1526-1533.
  • [9] Nogueira S., Riethmuler M.L., Campos J.B.L.M. and Pinto A.M.F.R. (2006): Flow in the nose region and annual film around a Taylor bubble rising through vertical columns of stagnant and flowing Newtonian liquids. - Chemical Engineering Science, vol.61, pp.845-857.
  • [10] Bugg J.D., Mack K. and Rezkallah K.S. (1998): A numerical model of Taylor bubbles rising through stagnant liquids in vertical tubes. - International Journal of Multiphase Flow, vol.24, No.2, pp.271-281.
  • [11] Mao Z-S. and Dukler A.E. (1990): The motion of Taylor bubbles in vertical tubes. I. A numerical simulation for the shape and rise velocity of Taylor bubbles in stagnant and flowing liquid. - Journal of Computational Physics, vol.91, No.1, pp.132-160.
  • [12] Mao Z-S. and Dukler A.E. (1991): The motion of Taylor bubbles in vertical tubes-II. Experimental data and simulations for laminar and turbulent flow. - Chemical Engineering Science, vol.46, No.8, pp.2055-2064.
  • [13] Kawaji M., DeJesus J.M. and Tudose G. (1997): Investigation of flow structures in vertical slug flow. - Nuclear Engineering and Design, vol.175, pp.37-48.
  • [14] Smith S., Taha T. and Cui Z. (2002): Enhancing Hollow Fibre Ultrafiltration Using Slug-Flow - a Hydrodynamic Study. - Desalination, vol.146, pp.69-74.
  • [15] Taha T. and Cui Z.F. (2004): Hydrodynamics of slug flow inside capillaries. - Chemical Engineering Science, vol.59, pp.1181-1190.
  • [16] Van Baten J.M., and Krishna R. (2005): CFD Simulation of Wall Mass Transfer for Taylor Flow in Circular Capillaries. - Chemical Engineering Science, vol.60, pp.1117-1126.
  • [17] Nigmatulin T.R. and Bonetto F.J. (1997): Shape of Taylor bubbles in vertical tubes. - International Communications in Heat and Mass Transfer, vol.24, No.8, pp.1177-1185.
  • [18] Dumitrescu D.T. (1943): Strömung an Einer Luftblase im Senkrechten Rohr. - Zeitschrift fur Angewandte Mathematik und Mechanik, vol.23, pp.139-149.
  • [19] Lertnuwat B. (2015): Model for predicting the head shape of a Taylor bubble rising through stagnant liquids in a vertical Tube. - Thammasat International Journal of Science and Technology, vol.20, No.1, pp.37-46.
  • [20] Hout R.V., Bernea D. and Shemer L. (2001): Evolution of statistical parameters of gas-liquid slug flow along vertical pipes. - International Journal of Multiphase Flow, vol.27, pp.1579-1602.
  • [21] Hout R.V., Bernea D. and Shemer L. (2003): Evolution of hydrodynamic and statistical parameters of gas-liquid slug flow along inclined pipes. - Chemical Engineering Science, vol.58, No.1, pp.115-133.
  • [22] Shemer L. (2003): Hydrodynamic and statistical parameters of slug flow. - International Journal of Heat and Fluid Flow, vol.24, pp.334-344.
  • [23] Pinto A.M.F.R., Coelho Pinheiro M.N. and Campos J.B.L. (2001): On the interaction of Taylor bubbles rising in two-phase co-current slug flow in vertical columns: turbulent wakes. - Experiments in Fluids, vol.31, pp.643-652.
  • [24] Thulasidas T.C., Abraham M.A. and Cerro R.L. (1997): Flow patterns in liquid slugs during bubble-train flow inside capillaries. - Chemical Engineering Science, vol.52, pp.2947-2962.
  • [25] Cheng H., Hills J.H. and Azzorpardi B.J. (1998): A study of the bubble-to-slug transition in vertical gas-liquid flow in columns of different diameter. - International Journal of Multiphase Flow, vol.24, No.3, pp.431-452.
  • [26] Sun B., Wang R., Zhao X. and Yan D. (2002): The mechanism for the formation of slug flow in vertical gas-liquid two-phase flow. - Solid-State Electronics, vol.46, No.12, pp.2323-2329.
  • [27] Kytömaa H.K. and Brennen C.E. (1991): Small amplitude kinematic wave propagation in two-component media. - International Journal of Multiphase Flow, vol.17, No.1, pp.13-26.
  • [28] Mayor T.S., Pinto A.M.F.R. and Campos J.B.L.M. (2007): Hydrodynamics of gas-liquid slug flow along vertical pipes in the laminar regimes-experimental and simulation study. - Industrial & Engineering Chemistry Research, vol.46, pp.3794-3809.
  • [29] Ferziger J.H. and Peric M. (2002): Computational Methods for Fluid Dynamics. - Germany: Springer.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ede4252-5b34-414d-8519-7b5b104619b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.