PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Gentamicin loaded PLGA nanoparticles as local drug delivery system for the osteomyelitis treatment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Since there are more and more cases of multiresistance among microorganisms, rational use of antibiotics (especially their systemic vs. local application) is of great importance. Here we propose polymeric nanoparticles as locally applied gentamicin delivery system useful in osteomyelitis therapy. Gentamicin sulphate (GS) was encapsulated in the poly(lactide-co-glycolide) (PLGA 85:15) nanoparticles by double emulsification (water/oil/water, W1/O/W2). The nanoparticles were characterized by dynamic light scattering, laser electrophoresis and atomic force microscopy. UV-vis spectroscopy (O-phthaldialdehyde assay, OPA) and Kirby-Bauer tests were used to evaluate drug release and antimicrobial activity, respectively. Physicochemical characterization showed that size, shape and drug solubilization of the nanoparticles mainly depended on GS content and concentration of surface stabilizer (polyvinyl alcohol, PVA). Laser electrophoresis demonstrated negative value of zeta potential of the nanoparticles attributed to PLGA carboxyl end group presence. Drug release studies showed initial burst release followed by prolonged 35-day sustained gentamicin delivery. Agar-diffusion tests performed with pathogens causing osteomyelitis (Staphylococcus aureus and Staphylococcus epidermidis, both reference strains and clinical isolates) showed antibacterial activity of GS loaded nanoparticles (GS-NPs). It can be concluded that GS-NPs are a promising form of biomaterials useful in osteomyelitis therapy.
Rocznik
Strony
41--48
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, Kraków, Poland
  • Jagiellonian University, Medical College, Department of Microbiology, Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, Kraków, Poland
Bibliografia
  • [1] ANHALT J.P., Assay of gentamicin in serum by high-pressure liquid chromatography, Antimicrob. Agents. Ch, 1997, Vol. 11(4), 651–655.
  • [2] BAQUERO F., Gram-positive resistance: challenge for the development of new antibiotics, J. Antimicrob. Chemother., 1997, Vol. 39, 1–6.
  • [3] BROC-RYCKEWAERT L., CARPENTIER R., LIPKA E., DAHER S., VACCHER C., BETBEDER D. FURMAN C., Development of innovative paclitaxel-loaded small PLGA nanoparticles: Study of their antiproliferative activity and their molecular interactions on prostatic cancer cells, Intern. J. Pharm., 2013, Vol. 454(2), 712–719.
  • [4] CALHOUN J., MANRING M.M., SHIRTLIFF M., Osteomyelitis of the long bones, Semin. Plast. Surg., 2009, Vol. 23(2), 59–72.
  • [5] CAMPOCCIA D., MANTANARO L., ARCIOLA C.R., The significance of infection related to orthopedic devices and issues of antibiotic resistance, Biomaterials, 2006, Vol. 27(11), 2331–2339.
  • [6] CAPAN Y., JIANG G., GIOVAGNOLI S., NA K.H., DE LUCA P.P., Preparation and characterization of poly(d,l-lactide-coglycolide) microspheres for controlled release of human growth hormone, AAPS Pharm. Sci. Tech., 2003, Vol. 4(2), 147–156.
  • [7] COSTERTON J.W., Biofilm theory guide the treatment of device-related orthopaedic infections, Clin. Orthop. Relat. Res., 2005, Vol. 437, 7–11.
  • [8] DOBRZYNSKI P., KASPERCZYK J., JANECZEK H., Synthesis of biodegradable copolymers with the use of low toxic zirconium compounds. 1. Copolymerization of glycolide with L-Lactide initiated by Zr(Acac)4, Macromolecules, 2001, Vol. 34, 5090–5099.
  • [9] European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 4.0, valid from 2014-01-01. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_ files/Breakpoint_tables/Breakpoint_table_v_4.0.pdf. Accessed 7 November 2014.
  • [10] FECZKÓ T., TÓTH J., DÓSA G., GYENIS J., Optimization of protein encapsulation in PLGA nanoparticles, Chem. Eng. Process, 2011, Vol. 50(8), 757–765.
  • [11] FLOCZYKOWSKI B., STORER A., Gentamicin Dosing and Monitoring Challenges in End-Stage Renal Disease, Adv. Pharmacoepidem. Drug. Safety, 2013, Vol. 2(3), DOI: 0.4172/2167-1052.1000135.
  • [12] GRABOWSKI N., HILLAIREAU H., VERGNAUD J., SANTIAGO L.A., KERDINE-ROMER S., PALLARDY M., TSAPIS N., FATTAL E., Toxicity of surface-modified PLGA nanoparticles toward lung alveolar epithelial cells, Intern. J. Pharm., 2013, Vol. 454(2), 686–694.
  • [13] JAIN G.K., PATHAN S.A., AKHTER S., AHMAD N., JAIN N., TALEGAONKAR S., KHAR R.K., AHMAD F.J., Mechanistic study of hydrolytic erosion and drug release behaviour of PLGA nanoparticles: Influence of chitosan, Polym. Degrad. Stab., 2010, Vol. 95, 2360–2366.
  • [14] KAYA E.G., OZBILGE H., ALBAYRAK S., Determination of the effect of gentamicin against Staphylococcus aureus by using microbroth kinetic system, ANKEM Derg., 2009, Vol. 23(3), 110–114.
  • [15] KLOSE D., SIEPMANN F., ELKHARRAZ K., SIEPMANN J., PLGA-based drug delivery systems: importance of the type of drug and device geometry, Int. J. Pharm., 2008, Vol. 354(1–2), 95–103
  • [16] LEE D.W., YUN Y.P., PARK K., KIM S.E., Gentamicin and bone morphogenic protein-2 (BMP-2)-delivering heparinized-titanium implant with enhanced antibacterial activity and osteointegration, Bone, 2012, Vol. 50(4), 974–982.
  • [17] LIN C.C., METTERS A.T., Hydrogels in controlled release formulations: network design and mathematical modeling, Adv. Drug. Deliv. Rev., 2006, Vol. 58, 1379–1408.
  • [18] MORENO D., ZALBA S., NAVARRO I., TROS DE ILARDUYA C., GARRIDO M., Pharmacodynamics of cisplatin-loaded PLGA nanoparticles administered to tumor-bearing mice, Eur. J. Pharm. Biopharm., 2010, Vol. 74(2), 265–274.
  • [19] PAMULA E., FILOVÁ E., BACÁKOVÁ L., LISÁ V., ADAMCZYK D., Resorbable polymeric scaffolds for bone tissue engineering: the influence of their microstructure on the growth of human osteoblast-like MG 63 cells, J. Biomed. Mater. Res. A, 2009, Vol. 89(2), 432–443.
  • [20] RAPP R.P., KENT M.E., SMITH K.E., Antibiotic Beads and Osteomyelitis: Here Today, What's Coming Tomorrow? Orthopedics, 2006, Vol. 29(7), 345–349.
  • [21] RUMIAN L., WOJAK I., SCHARNWEBER D., PAMULA E., Resorbable scaffolds modified with collagen type I or hydroxyapatite: in vitro studies on human mesenchymal stem cells, Acta Bioeng. Biomech., 2013, Vol. 15(1), 61–67.
  • [22] SASAKI T., ISHIBASHI Y., KATANO H., NAGUMO A., TOH S., In vitro elution of vancomycin from calcium phosphate cement, J. Arthroplast., 2005, Vol. 20(8), 1055–1059.
  • [23] SIVARAMAN B., RAMAMURTHI A., Multifunctional nanoparticles for doxycycline delivery towards localized elastic matrix stabilization and regenerative repair, Acta Biomater., 2013, Vol. 9(5), 6511–6525.
  • [24] SMITH I.M., AUSTIN O.M.B., BATCHELOR A.G., The treatment of chronic osteomyelitis: A 10 year audit, Journal of Plastic, Reconstructive & Aesthetic Surgery, 2006, Vol. 59(1), 11–15.
  • [25] TSAI A., UEMURA S., JOHANSSON M., PUGLISI E.V., MARSHALL R.A., AITKEN C.E., KORLACH J., EHRENBERG M., PUGLISI J.D., The impact of aminoglycosides on the dynamics of translation elongation, Cell. Rep., 2013; Vol. 3(2), DOI: 10.1016/j.celrep.2013.01.027.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6edd36d6-3157-4f8f-b5b4-0897050e2db5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.