PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Carbide Cutting Tool Coatings Characterization of 8YSZ

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using a duplex deposition of TiO2/8YSZ on a carbide cutting tool, a successful sol-gel procedure was achieved, resulting in high homogeneity, good dispersion, and a low average value of surface roughness (223.6)nm. Thermal experiments were done to see how well the coating layers could withstand heat transfer and thermal deterioration. Residual stresses for coated and uncoated carbide cutting tools are measured after thermal shock (thermal shock). Both were immediately chilled in ice water after being heated for 90 minutes for coated inserts and 30 minutes for uncoated inserts at 500, 600, 700, 800, 900, and 1200 °C. For inserts, thermal shock from 900 °C results in significantly different damage mechanisms. The uncoated outside surface is still delineated by a crack network and is surrounded by nearby homogenous cells, but the coated insert (sol gel TBC) in this case really has a few tiny cracks beginning at the edge. The coated insert (sol-gel TBC) fails after being heated to 1200 °C and then cooled in water to freezing which is caused the start of the duplex coating degradation.
Twórcy
  • Department of Ceramic and Building Materials Engineering, College of Materials Engineering, Babylon University, Iraq
  • Al Salam College University, Iraq
autor
  • Department of Ceramic and Building Materials Engineering, College of Materials Engineering, Babylon University, Iraq
  • College of Materials Engineering, University of Babylon, Iraq
Bibliografia
  • 1. Al-Ethari H., Al-Dulaimi K.Y., Warcholinski B., Kuznetsova T.A. Interrelation of surface temperature and tribological characteristics of a protective coating on a tool. Journal of Friction and Wear, 2019; 40(6): 603–608.
  • 2. Asaad M, Al-Ethari H., Kareem S.J. Surface modification of cutting tool by multilayer coatings a-Review paper. In: AIP Conference Proceedings 2022; 2660(1): 020093.
  • 3. Cao X., Vassen R., Stoever D. Ceramic materials for thermal barrier coatings. Journal of the European Ceramic Society, 2004; 24(1): 1–10.
  • 4. Bennett A. Properties of thermal barrier coatings. The Institute of Metals. The ceramics processing research and development department of Rolls-Royce Ltd, Derby 1981.
  • 5. Ronghua W., John J.V., Jesse N.M., Michael N.G. Aspects of plasma-enhanced magnetron-sputtered deposition of hard coatings on cutting tools. Surf. Coat. Technol. 2002; 158–159: 465–472.
  • 6. Zhao J. and Liu Z. Influences of coating thickness on cutting temperature for dry hard turning Inconel 718 with PVD TiAlN coated carbide tools in initial tool wear stage, Journal of Manufacturing Processes 2020.
  • 7. Pin L., Vidal V., Blas F., Ansart F., Duluard S., Bonino J.P., Le Maoult Y., Lours P. Optimized sol–gel thermal barrier coatings for long-term cyclic oxidation life. Journal of the European Ceramic Society 2014; 34(4): 961–974.
  • 8. Haenni W., Hintermann H., Morel D., Simmen A. Titania-coatings on strongly passivated substrates.
  • 9. Hajizadeh-Oghaz M., Razavi R.S., Ghasemi A. Synthesis and characterization of ceria–yttria costabilized zirconia (CYSZ) nanoparticles by sol–gel process for thermal barrier coatings (TBCs) applications. Journal of Sol-Gel Science and Technology 2015; 74(3): 603–612.
  • 10. Liu L.Y., Shankar R., Howard P. High sintering resistance of a novel thermal barrier coating. Surf Coat Technol 2010; 204(20): 3154–3160.
  • 11. Wang R., Dong X., Wang K., Sun X., Fan Z., Duan W. Two-step approach to improving the quality of laser micro-hole drilling on thermal barrier coated nickel base alloys. Optics and Lasers in Engineering 2019; 121: 406–415.
  • 12. Vignesh B., Oliver W.C., Kumar G.S., Phani P.S. Critical assessment of high speed nanoindentation mapping technique and data deconvolution on thermal barrier coatings. Materials & Design 2019; 181: 108084.
  • 13. Zhao J., Liu Z., Wang B., Hu J., Wan Y. Tool coating effects on cutting temperature during metal cutting processes: Comprehensive review and future research directions. Mechanical Systems and Signal Processing 2021; 150: 107302.
  • 14. ASTM Handbook, Iron and Metal Products 1989; 01.01.
  • 15. Wurood A., Al-Ethari H., Kareem S. Investigation of microstructure, morphology and properties of monolayer and multilayer coating T6-HSS by the sol-gel route, Advances in Materials and Processing Technologies 2022.
  • 16. Yuan K., Yu Y., Wen J.F. A study on the thermal cyclic behavior of thermal barrier coatings with different MCrAlY roughness. Vacuum 2017; 137: 72–80.
  • 17. Pin L., Vidal V., Blas F., Ansart F., Duluard S., Bonino J.P., Le Maoult Y., Lours P. Optimized sol–gel thermal barrier coatings for long-term cyclic oxidation life. Journal of the European Ceramic Society 2014; 34(4): 961–974.
  • 18. Merkleina M., Andreasa K., Engela U. Influence of machining process on residual stresses in the surface of cemented carbides. Procedia Engineering 2011; 19: 252–257.
  • 19. Wurood A.M., Al-Ethari H. and Kareem S.J. 2022. Using grey relation analysis to improve tool life in medium carbon steel turning by coating multilayer HSS insert. In: Proceedings of 13th International Conference on Mechanical and Aerospace Engineering.
  • 20. Mai Y.W. Thermal‐shock resistance and fracture-strength behavior of two tool carbides. Journal of the american ceramic society 1976; 59(11–12): 491–494.
  • 21. Tarragó J.M., Dorvlo S., Esteve J., Llanes L. Influence of the microstructure on the thermal shock behavior of cemented carbides. Ceramics International 2016; 42(11): 12701–12708.
  • 22. Luo Q., Jones A.H. High-precision determination of residual stress of polycrystalline coatings using optimised XRD-sin2ψ technique. Surface and Coatings Technology 2010; 205(5): 1403–1408.
  • 23. Pourbafrani M., Razavi R.S., Bakhshi S.R., Loghman-Estarki M.R., Jamali H. Effect of microstructure and phase of nanostructured YSZ thermal barrier coatings on its thermal shock behaviour. Surface Engineering 2015; 31(1): 64–73.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6eda2bd0-7ff4-488a-894e-c103cfc35a9c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.