PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biotypowanie mikroorganizmów za pomocą spektrometrii mas oraz spektroskopii NMR

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Biotyping of microorganisms using mass spectrometry and NMR spectroscopy
Języki publikacji
PL
Abstrakty
EN
Typing microorganisms is a very important element of laboratory diagnostics. Appropriate recognition of the pathogen and determination of its sensitivity to the drugs used is necessary to start treatment. There are many types of microbial typing. The most popular division is genotypic and phenotypic typing (among which biotyping, antibiotic resistance analysis, and protein profile analysis are the most common) or phagotyping) [1, 2]. Recently, there has been a very rapid development of mass spectrometry techniques as a method for identifying microorganisms [3]. Mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR) are methods that allow the comparison of metabolomic profiles of microorganisms. These are also methods commonly used in metabolomics. Metabolomics is a field of science dealing with the analysis of low-mass compounds characteristic of the studied material [4]. Therefore, the use of metabolomics in microbiology allows to identify and discriminate of microorganisms [5]. Recently, the analyzes also apply to metabolites. Many studies focus on the analysis of volatile organic compounds (VOCs) that allow the analysis of samples directly from the patient without the need for isolation of a single microorganism [6, 7]. Recent studies show many possibilities for the use of NMR spectroscopy. The results of the analysis show that it is also a method that allows the identification and differentiation of strains of microorganisms. Thanks to this method it is also possible to determine the origin of the strain or to indicate its resistance to antibiotics. [10, 11]. Improvement of research algorithms used in metabolomics for biotyping microorganisms may in the future allow for the creation of a fast, accurate and cheap way to identify microorganisms. Proteomic tests using the MS method are very popular, in which protein profiles of strains are analyzed and compared. These studies are mainly conducted using MALDI-TOF MS mass spectrometry. This technique is now quite widely used in microbiological diagnostics [10]. The research confirms the high discrimination power of this method [11].
Słowa kluczowe
Rocznik
Strony
57--70
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
  • Katedra Biochemii, Biologii Molekularnej i Biotechnologii, Wydział Chemiczny, Politechnika Wrocławska, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
  • Katedra Biochemii, Biologii Molekularnej i Biotechnologii, Wydział Chemiczny, Politechnika Wrocławska, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
Bibliografia
  • [1] M. Brzozowski, P. Kwiatkowski, D. Kosik-Bogacka, J. Jursa-Kulesza, Post. Mikrobiol., 2017, 56, 535.
  • [2] A. van Belkim, P.T. Tassios, L. Dijkshoom, S. Haeggman, B. Cookson, N.K. Fry, V. Fussing, J. Green, E. Feil, P. Gerner-Smidt, S. Brisse, M. Struelens, Clin. Microbiol. Infect., 2007, 13, 1.
  • [3] U. Kosikowska, D. Stępień-Pyśniak, D. Pietras-Ożga, S. Andrzejczuk, M. Juda, A. Malm, Diagn. Lab., 2015, 51, 23.
  • [4] R. Bujak, W. Struck-Lewicka, M. J. Markuszewski, R. Kaliszan, J. Pharm. Biomed. Anal., 2015, 113, 108.
  • [5] M.L. Reaves, J.D. Rabinowitz, Curr. Opin. Biotechnol., 2011, 22, 17.
  • [6] O. Lawal, H. Knobel, H. Weda, T.M.E. Nijsen, R. Googacre, S.J. Fowler, Metabolomics, 2018, 14, 1.
  • [7] A.H. Neerincx, B.P. Geurts, M.F. Habets, J.A. Booij, J. van Loon, J.J. Jansen, L.M. Buydens, J. van Ingen, J.W. Mouton, F.J. Harren, R.A. Wevers, P.J. Merkus, S.M. Cristescu, L.A. Kluijtmans, J. Breath Res., 2016, 10, 1.
  • [8] T.L. Palama, I. Canard, G.J.P. Rautureau, C. Mirande, S. Chatellier, B. Elena-Herrmann, Analyst., 2016, 141, 4558.
  • [9] J. Kozlowska, D.W. Rivett, L.S. Vermeer, M.P. Carroll, K.D. Bruce, A.J. Mason, G.B. Rogers, Metabolomics, 2013, 9, 1262.
  • [10] A.E. Clark, E.J. Kaleta, A. Arora, D.M. Wolk, Clin. Microbiol. Rev., 2013, 26, 547.
  • [11] J. Chalupová, M. Raus, M. Sedlárová, M. Sebela, Biotech. Adv., 2014, 32, 230.
  • [12] B. Buszewski, A. Rogowska P. Pomastowski, M. Zloch, V. Railean-Plugaru, J. AOAC Int., 2017, 100, 1607.
  • [13] E. Sanjuán, В. Fouz, J.D. Oliver, C. Amaro, Appl. Environ. Microbiol., 2009, 75, 1604.
  • [14] M.R. Fairfax, M.H. Bluth, H. Salimnia, Clin. Lab. Med., 2018, 38, 253.
  • [15] C.M.R. Lacerda, K.F. Reardon, Brief. Funct. Genomic and Proteomics, 2009, 8, 75.
  • [16] S. Leao, A. Martin, G. Mejia, and J. Robledo, Pratical handbook for the phenotypic and genotypic identification of mycobacteria. Origins of Mycobacterium. Ulcerans View project, 2004.
  • [17] M. Kasela, A. Malm, B. Nowakowicz-Dębe^ M. Ossowski, Post. Hig., 2019, 73, 245.
  • [18] A.J. Sabat, A. Budimir, D. Nashev, R. Sa-Leao, J. van Dijl, F. Laurent, H. Grundmann, A.W. Friedrich, ECDC, 2013, 18.
  • [19] P.B. Smith, K.M. Tomfohrde, D.L. Rhoden, A. Balows, Appl. Microbiol., 1972, 24, 449.
  • [20] S. Giedrys-Kalemba, Typowanie molekularne w dochodzeniu epidemiologicznym. Zakażenia szpitalne podręcznik dla zespołów kontroli zakażeń, PZWL, Warszawa, 2009.
  • [21] D. Artur, Lekoopomość i antybiotykoterapia zakażeń. Zakażenia szpitalne. Podręcznik dla zespołów kontroli zakażeń, PZWL, Warszawa, 2009.
  • [22] D.L. Baggesen, G. Sørensen, E.M. Nielsen, H.C. Wegener, Eurosurveillance, 2010, 15.
  • [23] S. Alamian, M. Dadar, S. Solimani, A.M. Behrozikhah, A. Etemadi, Arch. Razi Inst. 2019, 74, 127.
  • [24] J. Caierão, J.A.C.D. Paiva, J.L.M. Sampaio, M.G.D. Silva, D.R.S. Santos, F.S. Coelho, L.S. Fonseca, R.S. Duarte, D.T. Armstrong, A.H. Regua-Mangia, Int. J. Infect. Dis., 2016, 42, 11.
  • [25] T. Stanley, I.G. Wilson, Mol. Biotech., 2003, 24, 203.
  • [26] A. Sękowska, E. Gospodarek, D. Kamińska, Arch. Med. Sei., 2012, 8, 993.
  • [27] T.R. Sandrin, J.E. Goldstein, S. Schumaker, Mass Spectrom. Rev., 2013, 32, 188.
  • [28] T. Chen, J. Sheng, Y. Fu, M. Li, J. Wang, A. Q. Jia, J. Proteome Res., 2017, 16, 824.
  • [29] B.B. Aldridge, K.Y. Rhee, Curr. Opin. Microbiol., 2014, 19, 90.
  • [30] M.L. Reaves, D. Rabinowitz, Curr. Opin. Biotechnol., 2011, 22, 17.
  • [31] K. Wolska, P. Szweda, Genotyping Techniques for Determining the Diversity of Microorganisms. Genetic Diversity in Microorganisms, InTech, 2012.
  • [32] M. Stobiecki, Biotechnologia, 2009, 2, 54.
  • [33] A.B. Canelas, A. ten Pierick, C. Ras, R.M. Seifar, J.C. van Dam, W.M. van Gulik, J.J. Heijnen, Anal. Chem., 2009, 81, 7379.
  • [34] A.C. Dona, M. Kyriakides, F. Scott, E.A. Shephard, D. Varshavi, K. Veselkov, J.R. Everett, Comput. Struct. Biotechnol. J., 2016, 14, 135.
  • [35] A.K. Kosmides, K. Kamisoglu, S.E. Calvano, S.A. Corbett, I.P. Androulakis, Crit. Rev. Biomed. Eng. 2013, 41, 205.
  • [36] W. Krzyściak, D. Kościelniak, M. Papież, A. Jurczak, P. Vyhouskaya, Evidence-based Complement. Altern. Med., 2017, 2017, 6859543.
  • [37] X. Liu, J.W. Locasale, Trends Biochem. Sci., 2017, 42, 274.
  • [38] B. Zhang, R. Powers, Future Med. Chem., 2012, 4, 1273.
  • [39] J. Tang, Curr. Genomics, 2011, 12, 391.
  • [40] S. Barnes, H.P. Benton, K. Casazza, S.J. Cooper, X. Cui, X. Du, J. Engler, J.H. Kabarowski, S. Li, W. Pathmasin, J.K. Prasain, M.B. Renfrow, H.K. Tiwari, J. Mass Spectrom. 2016, 51, 535.
  • [41] M. Kostrzewa, Expert Rev. Proteomics, 2018, 15, 193.
  • [42] A. Sampedro, J. Ceballos Mendiola, L. Aliaga Martínez, MALDI-TOF Commercial Platforms for Bacterial Identification. The Use of Mass Spectrometry Technology (MALDI-TOF) in Clinical Microbiology, Elsevier, 2018.
  • [43] L. Baudler, S. Scheufen, L. Ziegler, F. Möller Palau-Ribes, C. Ewers, M. Lierz, J. Vet. Diagn. Invest., 2019, 31, 620.
  • [44] Y. Li, M. Shan, Z. Zhu, X. Mao, M. Yan, Y. Chen, Q. Zhu, H. Li, B. Gu, BMC Infect. Dis., 2019, 19, 941.
  • [45] M. Berrazeg, S.M. Diene, M. Drissi, M. Kempf, H. Richet, L. Landraud, J.M. Rolain, PLoS One, 2013, 8, 61428.
  • [46] K.D. Nizio, K.A. Perrault, A.N. Troonbnikoff, M. Ueland, S. Shoma, J.R. Iredell, P.G. Middleton, S.L. Forbes, J. Breath Res., 2016, 10, 26008.
  • [47] W. Hewelt-Beta, J. Nakonieczna, M. Belka, T. Bączek, J. Namieśnik, A. Kot-Wasik, J. Proteome Res., 2016, 15, 914.
  • [48] A. Ząbek, M. Klimek-Ochab, E. Jawień, P. Młynarz, World J. Microbiol. Biotechnol., 2017, 33, 132.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ed9ba05-463c-4df9-9b03-edc78e39155f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.