PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Axial compressive behavior of FRP‑confined laminated timber columns

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Glued-laminated timber (GLT) and cross-laminated timber (CLT) have shown great potential in the field of sustainable structures (i.e., beams, slabs and floors). However, GLT and CLT columns are mostly considered as medium–low grade construction materials with a worse structural integral than timber columns. It is crucial to improve the performance of existing timber members to make the structures more acceptable for engineering applications. This study investigated the axial compressive behavior of GLT and CLT columns confined with fiber-reinforced polymer (FRP) sheets. To compare the mechanical properties of this composite structure, twenty groups of laminated Canadian hemlock column specimens were prepared using different FRP types and layer numbers, and two height dimensions were adopted for those columns to evaluate the scale effect. The failure modes of laminated timber columns were significantly influenced by the confinement of FRP, including timber crushing failures, FRP cracking failures and longitudinal buckling failures. According to the load– displacement curves, the load carrying capacity of FRP-confined laminated timber columns were improved by 6.35–36.19% compared with the unconfined specimens. Moreover, the FRP layers could prolong the plastic post-peak failure process. Inspired by confined concrete structures, three analytical predictive equations were derived for ultimate compressive strength.
Rocznik
Strony
art. no. e28, 2024
Opis fizyczny
Bibliogr. 45 poz., fot., wykr.
Twórcy
autor
  • College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
autor
  • College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
autor
  • College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
  • College of Material Science and Engineering, Southwest Forestry University, Kunming 650224, China
  • Ningbo Sino-Canada Low-Carbon Technology Research Institute, Ninghai 315600, China
autor
  • College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
autor
  • College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
autor
  • College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
Bibliografia
  • 1. Zaman A, Chan Y, Jonescu E, Stewart I. Critical challenges and potential for widespread adoption of mass timber construction in Australia—An analysis of industry perceptions. Buildings.2022;12:1405. https://doi.org/10.3390/buildings12091405.
  • 2. Brandner R, Flatscher G, Ringhofer A, Schickhofer G, Thiel A.Cross laminated timber (CLT): overview and development. EurJ Wood Wood Prod. 2016;74:331–51. https://doi.org/10.1007/s00107-015-0999-5.
  • 3. Pei S, Van de Lindt JW, Popovski M, Berman JW, Dolan JD,Ricles J, et al. Cross-laminated timber for seismic regions: progress and challenges for research and implementation. J StructEng. 2016;142:E2514001. https:// doi. org/ 10. 1061/ (ASCE) ST.1943-541X.0001192.
  • 4. Ehrhart T, Brandner R. Rolling shear: Test configurations and properties of some European soft- and hardwood species. EngStruct. 2018;172:554–72. https:// doi. org/ 10. 1016/j. engst ruct.2018.05.118.
  • 5. Liew KC, Tan YF, Albert CM, Raman V. Cross-laminated timber and glulam from low-density paraserianthes falcataria: a look in to densification and shear strength. Forests. 2022;13:1540. https://doi.org/10.3390/f13101540.
  • 6. He M, Sun X, Li Z. Bending and compressive properties of cross-laminated timber (CLT) panels made from Canadian hemlock.Constr Build Mater. 2018;185:175–83. https://doi.org/10.1016/j.conbuildmat.2018.07.072.
  • 7. Sciomenta M, Spera L, Peditto A, Ciuffetelli E, Savini F, BedonC, et al. Mechanical characterization of homogeneous and hybrid beech-Corsican pine glue-laminated timber beams. Eng Struct.2022;264: 114450. https:// doi. org/ 10. 1016/j. engst ruct. 2022.114450.
  • 8. Chen S, Wei Y, Wang G, Zhao K, Ding M. Mechanical behavior of laminated bamboo-timber composite columns under axial compression. Arch Civ Mech Eng. 2023;23:72. https://doi.org/10.1007/s43452-023-00612-y.
  • 9. Hassan O, Berg F, Gezelius E. Cross-laminated timber flooring and concrete slab flooring: A comparative study of structural design, economic and environmental consequences. J Build Eng.2019;26: 100881. https://doi.org/10.1016/j.jobe.2019.100881.
  • 10. Sun X, He M, Li Z. Experimental and analytical lateral performance of posttensioned CLT Shear Walls and Conventional CLTShear Walls. J Struct Eng. 2020;146:04020091. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002638.
  • 11. Oh JK, Hong JP, Kim CK, Pang SJ, Lee SJ, Lee JJ. Shear behaviorof cross-laminated timber wall consisting of small panels. J WoodSci. 2017;63:45–55. https://doi.org/10.1007/s10086-016-1591-2.
  • 12. Bhat JA. Improved strength and stiffness characteristics of cross-laminated poplar timber columns. Int J Eng-Iran. 2021;34:803–10.https://doi.org/10.5829/ije.2021.34.04a.06.
  • 13. Hassan OAB, Emad AAN, Abdulahad G. A comparative study between glulam and concrete columns in view of design, economy and environment. Case Stud Constr Mat. 2022;16: e00966. https://doi.org/10.1016/j.cscm.2022.e00966.
  • 14. Bita HM, Tannert T. Disproportionate collapse prevention analysis for a mid-rise flat-plate cross-laminated timber building. EngStruct. 2019;178:460–71. https:// doi. org/ 10. 1016/j. engst ruct.2018.10.048.
  • 15. Izzi M, Casagrande D, Bezzi S, Pasca D, Follesa M, Tomasi R.Seismic behaviour of cross-laminated timber structures: a state-of-the-art review. Eng Struct. 2018;170:42–52. https://doi.org/10.1016/j.engstruct.2018.05.060.
  • 16. Wei P, Wang BJ, Li H, Wang L, Peng S, Zhang L. A comparative study of compression behaviors of cross-laminated timber and glued-laminated timber columns. Constr Build Mater.2019;222:86–95. https://doi.org/10.1016/j.conbuildmat.2019.06.139.
  • 17. Siha A, Zhou C. Pull-out tests on bond behavior between timber and near-surface-mounted steel bars. Constr Build Mater.2021;288: 122974. https://doi.org/10.1016/j.conbuildmat.2021.122974.
  • 18. Lee IH, Song YJ, Hong SI. Evaluation of the compression strength performance of fiber-reinforced polymer (FRP) and steel-rein-forced laminated timber composed of small-diameter timber.BioRes. 2021;16:633–42. https://doi.org/10.15376/biores.16.1.633-642.
  • 19. Tannert T, Zhu H, Myslicki S, Walther F, Vallée T. Tensile andfatigue investigations of timber joints with glued-in FRP rods.J Adhesion. 2017;93:926–42. https://doi.org/10.1080/00218464.2016.1190653.
  • 20. Corradi M, Righetti L, Borri A. Bond strength of composite CFRP reinforcing bars in timber. Materials. 2015;8:4034–49. https://doi.org/10.3390/ma8074034.
  • 21. Wan J, Smith ST, Qiao P, Chen F. Experimental investigation on FRP-to-timber bonded interfaces. J Compos Constr.2014;18:A4013006. https:// doi. org/ 10. 1061/ (ASCE) CC. 1943-5614.0000418.
  • 22. Zhang J, Li H, Liu S, Zhang X, Yang C, Zhang R. Bond behavior of the CFRP-concrete interface under combined sustained loadand sulfate erosion. Structures. 2022;35:551–64. https://doi.org/10.1016/j.istruc.2021.11.029.
  • 23. Siha A, Zhou C, Yang L. Experimental study on axial compression behavior on circular timber columns strengthened with CFRP strips and near-surface mounted steel bars. Constr Build Mater.2021;147:04021003. https:// doi. org/ 10.1061/(ASCE)ST.1943-541X.0002931.
  • 24. Hu W, Li Y, Yuan H. Review of experimental studies on application of FRP for strengthening of bridge structures. Adv Mater SciEng. 2020;2020:8682163. https://doi.org/10.1155/2020/8682163.
  • 25. Li H, Chen B, Fei BH, Li H, Xiong Z, Lorenzo R, et al. Mechanical properties of aramid fiber reinforced polymer confined laminated bamboo lumber column under cyclic loading. Eur JWood Wood Prod. 2022;80:1057–70. https://doi. org/ 10. 1007/s00107-022-01816-4.
  • 26. Kim KHE, Andrawes B. Compression behavior of FRP strength-ened bridge timber piles subjected to accelerated aging. ConstrBuild Mater. 2016;124:177–85. https://doi.org/10.1016/j.conbuildmat.2016.07.020.
  • 27. de la Rosa P, Gonzalez MD, Prieto MI, Gomez E. Compressive behavior of pieces of wood reinforced with fabrics composed of carbon fiber and basalt fiber. Appl Sci-Basel. 2021;11:2460.https://doi.org/10.3390/app11062460.
  • 28. Li L, Yuan S, Dong J, Wang Q. An experimental study on the axial compressive behavior of timber columns strengthened by FRPsheets with different wrapping methods. In: 3rd International Con-ference on Civil Engineering, Architecture and Building Materials, Jinan, P. R. China, MAY 24–26, 2013.
  • 29. Almutairi AD, Bai Y, Wang YJ, Jeske J. Mechanical performance of fibre reinforced polymer confined softwood timber for pole applications. Compos Struct. 2020;235: 111807. https://doi.org/10.1016/j.compstruct.2019.111807.
  • 30. Fossetti M, Minafo G, Papia M. Flexural behaviour of glulamtimber beams reinforced with FRP cords. Constr Build Mater.2015;95:54–64. https://doi.org/10.1016/j.conbuildmat.2015.07.116.
  • 31. Shi F, Wang L, Du H, Zhao M, Li H, Wang F, et al. Axial compression behavior of FRP confined laminated timber columns under cyclic loadings. Buildings. 2022;12:1841. https://doi.org/10.3390/buildings12111841.
  • 32. ISO 13061-17. Physical and mechanical properties of wood—test methods for small clear wood specimens—part 17: Determination of ultimate stress in compression parallel to grain. Geneva:International Organization for Standardization; 2017. p. 2017.
  • 33. Lee IH, Kim KH. Influence of adhesive and layer composition on compressive strength of mixed cross-laminated timber.BioRes. 2021;16:7461–73. https://doi.org/10.15376/biores.16.4.7461-7473.
  • 34. Zhou SC, Chu FZ, Lv XH, Xiao Y. Experimental studies on glu-bam columns under axial compression. J Build Eng. 2022;49:103453. https://doi.org/10.1016/j.jobe.2021.103453.
  • 35. Kotsovos M, Perry S. Behaviour of concrete subjected to passive confinement. Mater Struct. 1986;19:259–64. https://doi.org/10.1007/BF02472108.
  • 36. Li B, Xiong H, Jiang J. End-friction effect on concrete cubes with passive confinement. J Mater Civ Eng. 2018;30:04018194. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002336.
  • 37. Feng P, Cheng S, Bai Y, Ye L. Mechanical behavior of concrete filled square steel tube with FRP confined concrete core subjected to axial compression. Compos Struct. 2015;123:312–24. https://doi.org/10.1016/j.compstruct.2014.12.053.
  • 38. Li H, Li H, Hong C, Xiong Z, Lorenzo R, Corbi I, et al. Experimental investigation on axial compression behavior of laminated bamboo lumber short columns confined with CFRP. Compos PartA-APPL S. 2021;150: 106605. https://doi.org/10.1016/j.compositesa.2021.106605.
  • 39. Lam L, Teng JG. Design-oriented stress-strain model for FRP-confined concrete. Constr Build Mater. 2003;17:471–89. https://doi.org/10.1016/S0950-0618(03)00045-X.
  • 40. Toutanji HA. Stress-strain characteristics of concrete columns externally confined with advanced fiber composite sheets. ACIMater J. 1999;96:397–404. https://doi.org/10.14359/639.
  • 41. Richart FE, Brandtzaeg A, Brown RL. A study of the failure of concrete under combined compressive stresses. Engineering Experiment Station Bulletin 1928; No. 1:185.
  • 42. Domingo AM, Chris PP, Lawrence DR. Mohr-coulomb model for rectangular and square FRP-confined concrete. Compos Struct.2019;209:889–904. https://doi.org/10.1016/j.compstruct.2018.11.024.
  • 43. Cai S, Jiao Z. Behavior and ultimate strength of short concrete-filled steel tubular columns. J Build Struct. 1984;5:13–29. https://doi.org/10.14006/j.jzjgxb.1984.06.002. (in Chinese).
  • 44. Willam JK, Warnke EP. Constitutive model for the triaxial behaviour of concrete. Proc Intl Assoc Bridge Struct Eng. 1975;19:1–30.
  • 45. Khorramian K, Sadeghian P. New mechanics-based confinement model and stress-strain relationship for analysis and design of concrete columns wrapped with FRP composites. Structures.2021;33:2659–74. https://doi.org/10.1016/j.istruc.2021.06.012.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ed10e9f-3b6e-4261-8aaa-1c1f8ff8ba3b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.