PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of mechanical behaviour in three-point bending of fatigue-stressed composite laminates

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work was to conduct an experimental investigation of the mechanical behaviour in the three-point bending of fatigue-stressed cross-ply laminated composites. A 3-point static bending study was carried out on two types of laminated composite materials to determine their mechanical characteristics as well as to assess the influence of the test speed and the effect of the stacking sequence on their mechanical behaviour. Different damage modes leading to the rupture of these materials were highlighted to determine their types.
Rocznik
Strony
107--113
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Graduate School of Industrial Technologies, P.O. Box 218, Annaba, 23000, Algeria
  • Badji Mokhtar University of Annaba, Mechanical Engineering Department, Laboratory of Industrial Mechanics, P.O. Box 12, DZ-23000, Algeria
autor
  • Badji Mokhtar University of Annaba, Mechanical Engineering Department, Laboratory of Industrial Mechanics, P.O. Box 12, DZ-23000, Algeria
autor
  • Badji Mokhtar University of Annaba, Mechanical Engineering Department, Laboratory of Industrial Mechanics, P.O. Box 12, DZ-23000, Algeria
Bibliografia
  • [1] Braszczyńska-Malik K.N., Malik M.A., Microstructure and mechanical properties of hypo- and hypereutectic cast Mg/Mg2Si composites, Materials 2020, 13(16), 3591, DOI: 10.3390/ma13163591.
  • [2] Ait Said A., Bey K., Mzad H., Mechanical fatigue test of aluminium composite panel (ACP) with aramid nida-core under cyclic bending, Journal of Mechanical Engineering 2020, 70(2), 1-10, DOI: 10.2478/scjme-2020-0015.
  • [3] Ihamouchen C., Djidjelli H., Boukerrou A., Fenouillot F., Barres C., Mechanical properties and thermal behavior of polyethylene composites reinforced with fibers lignocellolusiques, Matériaux & Techniques 2018, 106(6), 601, DOI: 10.1051/mattech/2018064.
  • [4] Dehkordi M.T., Nosraty H., Shokrieh M.M., Minak G., Ghelli D., Low velocity impact properties of intra-ply hybrid composites based on basalt and nylon woven fabrics, Materials & Design 2010, 31(8), 3835-3844, DOI: 10.1016/j.matdes.2010.03.033.
  • [5] Khelifa N., Bey K., Chemami A., Fatigue behavior and damage of composite laminates under 3 point bending test, Matériaux & Techniques 2016, 104, 2, 203, DOI: 10.1051/mattech/2016015.
  • [6] Bernasconi A., Davoli P., Basile A., Filippi A., Effect of fibre orientation on the fatigue behaviour of a short glass fibre reinforced polyamide-6, International Journal of Fatigue 2007, 29(2), 199-208, DOI: 10.1016/j.ijfatigue.2006.04.001.
  • [7] Laux T., Gan K.W., Dulieu-Barton J.M., Thomsen O.T., Ply thickness and fibre orientation effects in multidirectional composite laminates subjected to combined tension/compression and shear, Composites Part A: Applied Science and Manufacturing 2020, 133, 105864, DOI: 10.1016/j.compositesa.2020.105864.
  • [8] Grigoriou K., Mouritz A.P., Influence of ply stacking pattern on the structural properties of quasi-isotropic carbon- epoxy laminates in fire, Composites Part A: Applied Science and Manufacturing, 2017, 99, 113-120, DOI: 10.1016/j.compositesa. 2017.04.008.
  • [9] Mengal A.N., Karuppanan S., Influence of angle ply orientation on the flexural strength of basalt and carbon fiber reinforced hybrid composites, Composites Research 2015, 28(1), 1-5, DOI: 10.7234/composres.2015.28.1.001.
  • [10] Brighenti R., Carpinteri A., Scorza D., Effect of fibre arrangement on the multiaxial fatigue of fibrous composites: a micromechanical computational model, Frattura ed Integrità Strutturale 2015, 34, 59-68, DOI: 10.3221/IGF-ESIS.34.05.
  • [11] Purimpat S., Jérôme R., Shahram A., Effect of fiber angle orientation on a laminated composite single-lap adhesive joint, Advanced Composite Materials 2013, 22(3), 139-149, DOI: 10.1080/09243046.2013.782805.
  • [12] Tao J., Sun C.T., Influence of ply orientation on delamination in composite laminates, Journal of Composite Materials, 1998, 32(21), 1933-1947, DOI: 10.1177/002199839803202103.
  • [13] Wharmby A.W., Ellyin F., Damage growth in constrained angle-ply laminates under cyclic loading, Composites Science and Technology 2002, 62(9), 1239-1247, DOI: 10.1016/S0266-3538(02)00075-1.
  • [14] Sihn S., Kim R.Y., Kawabe K., Tsai S.W., Experimental studies of thin-ply laminate composites, Composites Sciences and Technology 2007, 67(6), 996-1008, DOI: 10.1016/j.compscitech.2006.06.008.
  • [15] Ait Said A., Bey K., Mzad H., Coupled effect of load ratio and frequency on mechanical fatigue behavior of precast aluminiun/aramid fibre composite, Composites Theory and Practice 2021, 21(1-2), 46-53.
  • [16] Nevadunski J.J., Lucas J.J., Salkind M.J., Early fatigue damage detection in composite materials, Journal of Composite Materials, 1975, 9(4), 394-408, DOI: 10.1177/002199837500900409.
  • [17] Henaff-Gardin C., Lafarie-Frenot M.C., Specificity of matrix cracking development in CFRP laminates under mechanical or thermal loadings, International Journal of Fatigue 2002, 24(2-4), 171-177, DOI: 10.1016/S0142-1123(01)00070-6.
  • [18] Colombo C., Guagliano M., Vergani L., High-cycle fatigue strength of a pultruded composite material, Frattura ed Integrità Strutturale 2009, 3(7), 65-72, DOI: 10.3221/IGFESIS.07.05.
  • [19] Chevalier P.L., Kassapoglou C., Gürdal Z., Fatigue behawior of composite laminates with automated fiber placement inuced defects – a review, International Journal of Fatigue 2020, 140, 105775, DOI: 10.1016/j.ijfatigue.2020.105775.
  • [20] Yao L., Cui H., Guo L., Sun Y., A novel total fatigue life model for delamination growth in composite laminates under generic loading, Composite Structures 2021, 258, 113402, DOI: 10.1016/j.compstruct.2020.113402.
  • [21] Bey K., Tadjine K., Khelif R., Chemami A., Benamira M., Azari Z., Mechanical behavior of sandwich composites under three-point bending fatigue, Mechanics of Composite Materials 2015, 50, 747-756, DOI: 10.1007/s11029-015-9464-0.
  • [22] Roudet F., Desplanques Y., Degallaix S., Fatigue of glass/epoxy composite in three-point-bending with predominant shearing, International Journal of Fatigue 2002, 24(2-4), 327-337, DOI: https://doi.org/10.1016/S0142-1123(01)00088-3.
  • [23] Kim H.C., Ebert L.J., Flexural fatigue behaviour of unidirectional fibreglass composites, Fibre Science and Technology 1981, 14(1), 3-20, DOI: 10.1016/0015-0568(81)90044-0.
  • [24] Bezazi A., Elmahi A., Berthelot J.M., Kondratas A., Investigation of cross-ply laminates in three point bending tests. Part II: Cyclic Fatigue Tests, Materials Science 2003, 9(1), 128-133.
  • [25] Ha S.K., Jin K.K., Huang Y., Micro-mechanics of failure (MMF) for continuous fiber reinforced composites, Journal of Composite Materials 2008, 42(18), 1873-1895, DOI: 10.1177/0021998308093911.
  • [26] Quaresimin M., Susmel L., Talreja R., Fatigue behaviour and life assessment of composite laminates under multiaxial loadings, International Journal of Fatigue 2010, 32(1), 2-16, DOI: 10.1016/j.ijfatigue.2009.02.012.
  • [27] Zhou S., Li Y., Fu K., Wu X., Progressive fatigue damage modelling of fibre-reinforced composite based on fatigue master curves, Thin-Walled Structures 2021, 158, 107173, DOI: 10.1016/j.tws.2020.107173.
  • [28] Ben Cheikh Larbi A., Sidhom H., Sai K., Baptiste D., Constitutive model of micromechanical damage to predict reduction in stiffness of a fatigued SMC composite, Journal of Materials Engineering and Performance 2006, 15, 575-580, DOI: 10.1361/105994906X124569.
  • [29] Tao G., Xia Z., Biaxial fatigue behavior of an epoxy polymer with mean stress effect, International Journal of Fatigue 2009, 31(4), 678-685, DOI: 10.1016/j.ijfatigue.2008.03.025.
  • [30] Valarinho L., Sena-Cruz J., Correia J.R., Branco F.A., Numerical simulation of the flexural behaviour of composite glass-GFRP beams using smeared crack models, Composites Part B: Engineering 2017, 110, 336-350, DOI: 10.1016/j.compositesb.2016.10.035.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ec8fa62-eaf4-4523-b99e-b477f32b20f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.