PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Advanced biocomposites based on silica and lignin precursors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new method is proposed for obtaining biocomposites based on a combination of silica and lignin precursors. Amorphous silica was produced by two methods: one based on hydrolysis and condensation of tetraethoxysilane (sol–gel method) and the other involving precipitation in a polar medium. Additionally, the commercial silica known under the name of Syloid®244 was used. The silica surface was modified to ensure better affinity of the support to activated lignin. The biocomposites obtained were carefully characterised by determination of their physicochemical and dispersive–morphological properties. Electrokinetic stability of the biocomposites was evaluated on the basis of zeta potential dependence on pH. Thermal stability of the biocomposites and their porous structure parameters (surface area, pore diameter and pore volume) were established. The results indicate that silica/lignin biocomposites are much promising for application in many areas of science and industry.
Rocznik
Strony
497--509
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, M. Sklodowskiej–Curie 2, PL-60-965 Poznan, Poland
autor
  • Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, M. Sklodowskiej–Curie 2, PL-60-965 Poznan, Poland
  • Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, M. Sklodowskiej–Curie 2, PL-60-965 Poznan, Poland
  • Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, M. Sklodowskiej–Curie 2, PL-60-965 Poznan, Poland
Bibliografia
  • 1. BRDAR M., SCIBAN M., TAKACI A., DOSENOVIC T., 2012, Comparison of two and three parameters adsorption isotherm for Cr(VI) onto Kraft lignin, Chem. Eng. J., 183, 108–111.
  • 2. COLLINSON S.R., THIELEMANS W., 2010, The catalytic oxidation of biomass to new materials focusing on starch, cellulose and lignin, Coord. Chem. Rev., 255, 1854–1870.
  • 3. COTORUELO L.M., MARQUES M.D., DIAZ F.J., RODRIGUEZ–MIRASOL J., RODRIGUEZ J.J., CORDERO T., 2012, Adsorbent ability of lignin-based activated carbons for the removal of p-nitrophenol from aqueous solutions, Chem. Eng. J., 184, 176–183.
  • 4. DONG D., FRICKE A., MOUDGIL B., JOHNSON H., 1996, Electrokinetic study of Kraft lignin, Tappi J., 79, 191–197.
  • 5. ELIMELECH M., CHEN W., WAYPA J., 1994, Measuring the zeta (electrokinetic) potential of reverse osmosis membranes by a streaming potential analyzer, Desalination, 95, 269–286.
  • 6. EK M., GELLERSTEDT G., HENRIKSSON G., 2009, Wood Chemistry and Biotechnology (Pulp and Paper Chemistry and Technology), De Gruyter, Berlin 2009.
  • 7. HARMITA H., KARTHIKEYAN K.G., PAN X.J., 2009, Copper and cadmium ions sorption onto Kraft and organosolv lignins, Bioresour. Technol., 100, 6183–6191.
  • 8. IBRAHIM I.A.M., ZIKRY A.A.F., SHARAF M.A., 2010, Preparation of spherical silica nanoparticles: Stöber silica, J. Amer. Sci., 6, 985–989.
  • 9. JESIONOWSKI T., KRYSZTAFKIEWICZ A., 2001, Influence of silane coupling agents on surface properties of precipitated silicas, Appl. Surf. Sci., 172, 18–32.
  • 10. JESIONOWSKI T., 2002, Characterisation of silicas precipitated from solution of sodium metasilicate and hydrochloric acid in emulsion medium, Powder Technol., 127, 56–65.
  • 11. JESIONOWSKI T., 2002, Effect of surfactants on the size and morphology of the silica particles prepared by an emulsion technique, J. Mater. Sci., 37, 5275–5281.
  • 12. JESIONOWSKI T., ŻURAWSKA J., KRYSZTAFKIEWICZ A., 2002, Surface properties and dispersion behavior of precipitated silicas, J. Mater. Sci., 37, 1621–1633.
  • 13. JESIONOWSKI T., 2005, Characterisation of pigments obtained by adsorption of C.I. Basic Blue 9 and C.I. Acid Orange 52 dyes onto silica particles precipitated via the emulsion route, Dyes Pigments, 67, 81–92.
  • 14. KIJIMA M., HIRUKAWA T., HANAWA F., HATA T., 2011, Thermal conversion of alkaline lignin and its structured derivatives to porous carbonized materials, Bioresour. Technol., 102, 6279–6285.
  • 15. KLAPISZEWSKI L., MADRAWSKA M., JESIONOWSKI T., 2012, Preparation and characterisation of hydrated silica/lignin biocomposites, Physicochem. Probl. Miner. Process., 48, 463–473.
  • 16. KOSMULSKI M., 2009, Surface Charging and Points of Zero Charge, CRC Press, New York 2009.
  • 17. KOVACS T.G., MARTEL P.H., O’CONNOR B.I., PARROTT J.L., McMASTER M.E., VAN DER KRAAK G.J., MacLATCHY D.L., VAN DEN HEUVEL M.R., HEWITT L.M., 2011, Kraft mill effluent survey: progress toward best management practices for reducing effects on fish reproduction, Environ. Toxicol. Chem., 30, 1421–1429.
  • 18. KUNANOPPARAT T., MENUT P., MOREL M.H., GUILBERT S., 2012, Improving wheat gluten materials properties by Kraft lignin addition, J. Appl. Polym. Sci., 125, 1391–1399.
  • 19. MILCZAREK G., 2007, Preparation and characterization of a lignin modified electrode, Electroanal., 19, 1411–1414.
  • 20. MILCZAREK G., 2009, Preparation, characterization and electrocatalytic properties of an iodine|lignin-modified gold electrode, Electrochim. Acta 54, 3199–3205.
  • 21. MILCZAREK G., 2010, Kraft lignin as dispersing agent for carbon nanotubes, J. Electroanal. Chem., 638, 178–181.
  • 22. MILCZAREK G., INGANAS O., 2012, Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks, Science, 335, 1468–1470.
  • 23. MORANDIM–GIANNETTI A.A., AGNELLI J.M., LAN B.Z., MAGNABOSCO R., CASARIN S.A., BETTINI S.H., 2012, Lignin as additive in polypropylene/coir composites: thermal, mechanical and morphological properties, Carbohydr. Polym., 87, 2563–2568.
  • 24. NOVAES E., KIRST M., CHIANG V., WINTER-SEDEROFF H., SEDEROFF R., 2010, Lignin and biomass: A negative correlation for wood formation and lignin content in trees, Plant Physiol., 154, 555–561.
  • 25. OTTERSTEDT J.E., BRANDRETH D.A, 1998, Small Particles Technology, Plenum Press, New York 1998.
  • 26. RALPH J., 1999, Lignin Structure: Recent Developments, US Dairy Forage Research Center, USDA–Agricultural Research Service, Madison 1999.
  • 27. RODRIGUEZ-MIRASOL J., CORDERO T., RODRIGUEZ J.J., 1993, CO2 – reactivity of Eucalyptus Kraft lignin chars, Carbon, 31, 53–61.
  • 28. SCIBAN M.B., KLASNJA M.T., ANTOV M.G., 2011, Study of the biosorption of different heavy metal ions onto Kraft lignin, Ecol. Eng., 37, 2092–2095.
  • 29. STÖBER W., FINK A., BOHN E., 1968, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci., 26, 62–69.
  • 30. WEINER B., TSCHARNUTER W., BRUCE D., FAIRHURST D., 1993, Zeta potential: A new approach, Brookhaven Instruments Corporation Holtsville, New York 1993.
  • 31. WYPYCH G., 2010, Handbook of Fillers, Chemical Technology Publishing, Toronto 2010.
  • 32. XU G., ZHANG J., SONG G., 2003, Effect of complexation on the zeta potential of silica powder, Powder Technol., 134, 218–222.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ec8f902-63b8-4ab8-af46-cf18ab14b9a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.