PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monitoring field scale CO2 injection from time-lapse seismic and well log, integrating with advanced rock physics model at Cranfield EOR site

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Causes and effects of global warming have been highly debated in recent years. Nonetheless, injection and storage of CO2 (CO2 sequestration) in the subsurface is becoming increasingly accepted as a viable tool to reduce the amount of CO2 from the atmosphere, which is a primary contributor to global warming. Monitoring of CO2 movement with time is essential to ascertain that sequestration is not hazardous. A method is proposed here to appraise CO2 saturation from seismic attributes using differential effective medium theory modified for pressure (PDEM). The PDEM theory accounts pressure-induced fluid flow between cavities, which is a very important investigation in the CO2-sequestered regime of heterogeneous microstructure. The study area is the lower Tuscaloosa formation at Cranfield in Mississippi, USA, which is one of the active enhanced oil recovery (EOR), and CO2 capture and storage (CCS) fields. Injection well (F1) and two observation wells (F2 and F3) are present close (within 112 m) to the detailed area of study for this region. Since the three wells are closely situated, two wells, namely injection well F1 and the furthest observation well F3, have been focused on to monitor CO2 movement. Time-lapse (pre- and post-injection) log, core and surface seismic data are used in the quantitative assessment of CO2 saturation from the PDEM theory. It has been found that after approximately 9 months of injection, average CO2 saturations in F1 and F3 are estimated as 50% in a zone of thickness ~ 25 m at a depth of ~ 3 km.
Czasopismo
Rocznik
Strony
1207--1218
Opis fizyczny
Bibliogr. 54 poz.
Twórcy
autor
  • National Geophysical Research Institute, Hyderabad, India
Bibliografia
  • 1. Ajo-Franklin JB, Peterson J, Doetsch J, Daley TM (2013) High-resolution characterization of a CO2-plume using Crosswell seismic tomography: Cranfield, MS, USA. Int J Greenh Gas Control. doi: 10.1016/j.ijggc.2012.12.018
  • 2. Batzle M, Wang Z (1992) Seismic properties of pore fluids. Geophysics 57:1396–1408
  • 3. Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid—I: low-frequency range. J Acoust Soc Am 28:168–178
  • 4. Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33:1482–1498
  • 5. Burkhart T, Hoover AR, Flemings PB (2000) Time-lapse (4-D) seismic monitoring of primary production of turbidite reservoirs at South Timbalier Block 295, offshore Louisiana, Gulf of Mexico. Geophysics 65:351–367
  • 6. Chapman M (2003) Frequency-dependent anisotropy due to meso-scale fractures in the presence of equant porosity. Geophys Prospect 51:369–379
  • 7. Chapman M, Zatsepin SV, Crampin S (2002) Derivation of a microstructural poroelastic model. Geophys J Int 151:427–451
  • 8. Choi J-W, Nicot JP, Meckel TA, Hovorka SD (2011) Numerical modeling of CO2 injection into a typical US Gulf Coast anticline structure. Energy Procedia 4:3486–3493. doi: 10.1016/j.egypro.2011.02.275
  • 9. Devery DM (1980) Lower Tuscaloosa of southern Mississipi. Miss Geol 1:6–7
  • 10. Ditkof J, Zeng H, Meckel TA, Hovorka SD (2011) Time lapse seismic response (4D) related to industrial-scale CO2 injection at an EOR and CCS site, Cranfield, MS, posterpresented at the 2011 Geological Society of American Meeting & Exposition, Minneapolis, Minnesota, October 9-12. GCCC Digital Publication Series #11–19
  • 11. Dvorkin J, Nur A (1993) Dynamic poroelasticity: a unified model with the squirt and the Biot mechanisms. Geophysics 58:524–533
  • 12. Dvorkin J, Mavko G, Nur A (1995) Squirt flow in fully saturated Rocks. Geophysics 60:97–107
  • 13. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond 241:376–396
  • 14. Gassmann F (1952) Über die elastizität poröser medien: Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich. 96:1–23
  • 15. Ghosh R, Sain K (2008) Effective medium modeling to assess gas hydrate and free-gas evident from the velocity structure in the Makran accretionary prism, offshore Pakistan. Mar Geophys Res 29:267–274
  • 16. Ghosh R, Sen MK (2012) Predicting subsurface CO2 movement: from laboratory to field scale. Geophysics 77:1–11
  • 17. Ghosh R, Sain K, Ojha M (2010a) Effective medium modeling of gas hydrate-filled fractures using the sonic log in the Krishna-Godavari basin, offshore eastern India. J Geophys Res 115:B06101
  • 18. Ghosh R, Sain K, Ojha M (2010b) Estimating the amount of gas-hydrate using effective medium theory: a case study in the Blake Ridge. Mar Geophys Res 31:29–37
  • 19. Ghosh R, Sen MK, Vedanti N (2015) Quantitative interpretation of CO2 plume from Sleipner (North Sea), using post-stack inversion and rock physics modeling. Int J Greenh Gas Control 32:147–158
  • 20. Hall SA (2006) A methodology for 7d warping and deformation monitoring using time-lapse seismic data. Geophysics 71:O21–O31
  • 21. Hersch JB (1987) Exploration methods-lower tuscaloosa trend, southwest Mississippi. Gulf Coast Assoc Geol Soc Trans 37:105–112
  • 22. Hornby BE, Schwartz LM, Hudson JA (1994) Anisotropic effective-medium modeling of elastic properties of shales. Geophysics 59:1570–1583
  • 23. Hovorka SD (2011) Overview of CCS presented at the Midwest Governor’s Association Meeting. Houston, Texas
  • 24. Hudson JA, Liu E, Crampin S (1996) The mechanical properties of materials with interconnected cracks and pores. Geophys J Int 124:105–112
  • 25. Isaac JH, Lawton DC (2006) A case history of time-lapse 3d seismic surveys at cold lake, alberta, canada. Geophysics 71:B93–B99
  • 26. Jakobsen M (2004) The interacting inclusion model of wave-induced fluid flow. Geophys J Int 158:1168–1176
  • 27. Jakobsen M, Chapman M (2009) Unified theory of global flow and squirt flow in cracked porous media. Geophysics 74:WA65–WA76
  • 28. Jakobsen M, Hudson JA, Minshull TA, Singh SC (2000) Elastic properties of hydrate-bearing sediments using effective medium theory. J Geophys Res 105:561–577
  • 29. Jakobsen M, Hudson JA, Johansen TA (2003a) T-matrix approach to shale acoustics. Geophys J Int 154:533–558
  • 30. Jakobsen M, Johansen TA, McCann C (2003b) The acoustic signature of fluid flow in complex porous media. J Appl Geophys 54:219–246
  • 31. Knox PR, Hovorka SD (2001) Geological sequestration of greenhouse gases: opportunities for industry academe research partnerships. Hous Geol Soc Bull 43:26–33
  • 32. Kordi M, Hovorka SD, Milliken K, Treviño R, Lu J (2010) Diagenesis and reservoir heterogeneity in the Lower Tuscaloosa Formation at Cranfield Field, Mississippi, Presented at the 60th Annual Convention of the Gulf Coast Association of Geologicial Societies and the Gulf Coast Section of SEPM. San Antonio, Texas
  • 33. Mancini EA, Puuckett TM (2005) Jurassic and Cretaceous transgressive-regressive (T-R) cycles, northern Gulf of Mexico, USA. Stratigraphy 2:31–4
  • 34. Mavko G, Jizba D (1991) Estimating grain-scale fluid effects on velocity dispersion in rocks. Geophysics 56:1940–1949
  • 35. Mavko G, Nur A (1975) Melt squirt in the asthenosphere. J Geophys Res 80:1444–1448
  • 36. Meckel TA, Hovorka SD, Kalyanaraman N (2008) Continuous pressure monitoring for large volume CO2 injections. In: 9th International Conference on Greenhouse Gas Control Technologies (GHGT-9) Washington D C, pp 16–20
  • 37. Mississippi Oil and Gas Board (1966) Cranfield field, cranfield unit, basal tuscaloosa reservoir, adams and franklin counties, Mississippi, pp 42–58
  • 38. Mukerji T, Mavko G (1994) Pore fluid effects on seismic velocity in anisotropic rocks. Geophysics 59:233–244
  • 39. Mura T (1982) Micromechanics of defects in solids (Martinus Nijhoff)
  • 40. Nicot J-P, Hosseini SA, Solano SV (2011) Are single-phase flow numerical models sufficient to estimate pressure distribution in CO2 sequestration projects? In: Proceedings of the 10th International Conference on Greenhouse Gas Control Technologies GHGT10, Energy Procedia. Vol 4, pp 3919–3926. GCCC Digital Publication #11–14, Amsterdam (September 19–23, 2010)
  • 41. Lee MW, Hutchinson DR, Collet TS, Dillon WP (1996) Seismic velocities for hydrate-bearing sediments using weighted equation. J Geophys Res 101(B9):20347–20359
  • 42. O’Connell RJ, Budiansky B (1977) Viscoelastic properties of fluid saturated cracked solids. J Geophys Res 82:5719–5735
  • 43. Reid FJ, Bertrand A, McInally AT, MacBeth C (2005) 4d signal enhancement using singular-value decomposition: application to mapping oil–water contact movement across the nelson field. Geophys Prospect 53:253–263
  • 44. Rubin E, Meyer L, de Coninck H (2005), Carbon dioxide capture and storage: Technical summary. In: Tech. rep. The Intergovernmental Panel on Climate Change (IPCC)
  • 45. Sain K, Ghosh R, Ojha M (2010) Rock physics modeling for assessing gas hydrate and free gas: a case study in the Cascadia accretionary prism. Mar Geophys Res 31:109–119
  • 46. Staples R, Hague P, Weisenborn T, Ashton P, Michalek B (2005) 4d seismic for oil-rim monitoring. Geophys Prospect 53:243–251
  • 47. Tao Y, Sen MK, Zhang R, Spikes KT (2013) A new stochastic inversion workflow for time-lapse data: hybrid starting model and double-difference inversion. J Geophys Eng 10(3):035011 (Art)
  • 48. United States geological Survey Gulf Coast Region Assesment Team (2006) Petroleum systems and geologic assessment of undiscovered oil and gas, Cotton Valley Group and Travis Peak-Hosston Formations, east Texas Basin and Louisiana-Mississippi Salt Basins provinces of the northern Gulf Coast region, USGS digital data series #69-E
  • 49. Wagner SR, Pennington WD, MacBeth C (2006) Gas saturation prediction and effect of low frequencies on acoustic impedance images at foinaven field. Geophys Prospect 54:75–87
  • 50. Wang Z, Wang H, Cates ME (2001) Effective elastic properties of solid clays. Geophysics 66(2):428–440
  • 51. Werren EG, Shew RD, Adams ER, Stancliffe RJ (1990) Meander-belt reservoir geology, mid-dip Tuscaloosa, Little Creek Field, Mississippi. In: Barwis JH, McPherson JG, Studlick JR (eds) Sandstone petroleum reservoirs. Springer-Verlag, New York, pp 85–107
  • 52. Zatsepin SV, Crampin S (1997) Modelling the compliance of crustal rock, I. Response of shear-wave splitting to differential stress. Geophys J Int 129:477–494
  • 53. Zhang R, Castagna J (2011) Seismic sparse-layer reflectivity inversion using basis pursuit decomposition. Geophysics 76:147–158
  • 54. Zhang R, Ghosh R, Sen MK, Srinivasan S (2012) Time-lapse surface seismic inversion with thin bed resolution for monitoring CO2 sequestration: a case study from Cranfield, Mississippi. Int J Greenh Gas Control 706:1–9
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ec2e9ce-f9f2-48be-ba4c-2886cc861f35
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.