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Abstract. A graph G is locally irregular if every two adjacent vertices of G have different
degrees. A locally irregular decomposition of G is a partition E1, . . . , Ek of E(G) such that
each G[Ei] is locally irregular. Not all graphs admit locally irregular decompositions, but
for those who are decomposable, in that sense, it was conjectured by Baudon, Bensmail,
Przybyło and Woźniak that they decompose into at most 3 locally irregular graphs. Towards
that conjecture, it was recently proved by Bensmail, Merker and Thomassen that every
decomposable graph decomposes into at most 328 locally irregular graphs. We here focus
on locally irregular decompositions of subcubic graphs, which form an important family of
graphs in this context, as all non-decomposable graphs are subcubic. As a main result, we
prove that decomposable subcubic graphs decompose into at most 5 locally irregular graphs,
and only at most 4 when the maximum average degree is less than 12

5 . We then consider
weaker decompositions, where subgraphs can also include regular connected components, and
prove the relaxations of the conjecture above for subcubic graphs.
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1. INTRODUCTION

Throughout this paper, we deal with so-called locally irregular decompositions, which
are defined as follows. We consider undirected simple graphs only. A graph G is said
locally irregular if, for every edge uv of G, we have d(u) 6= d(v). The concept of locally
irregular graph arose in the context of neighbour-distinguishing edge-weightings, where
one aims at weighting the edges of a given graph so that a particular aggregate,
computed from the weighting, yields a proper vertex-colouring. The well-known 1-2-3
Conjecture, raised by Karoński, Łuczak and Thomason [6], and its variants (see the
survey [9] by Seamone), are perhaps the most representative examples where locally
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irregular graphs arise naturally, as the “best graphs” for these problems are precisely
the locally irregular ones.

Still in the context of those weighting problems related to locally irregular graphs,
there are situations where, though a given graph G is not locally irregular, knowing
that G decomposes into a certain number of locally irregular graphs may have some
consequences. Here, by a decomposition of G, we mean an edge-partition E1, . . . , Ek of
E(G). Alternatively, a decomposition of G may be regarded as an edge-colouring of G.
A decomposition of G is said locally irregular when all parts or colour classes induce
locally irregular graphs. Locally irregular decompositions were formally introduced
in [1] by Baudon, Bensmail, Przybyło and Woźniak, who noted that, in particular
contexts, a graph admitting a particular locally irregular decomposition agrees with
the 1-2-3 Conjecture, or variants of it.

As a more general perspective, we are interested in determining, given a graph G,
the smallest number of locally irregular subgraphs that decompose G. Following the
edge-colouring point of view, we denote by χ′irr(G) that chromatic parameter, which
we call the irregular chromatic index (of G). Note that the irregular chromatic index
is not defined for all graphs, consider for instance any odd-length path or odd-length
cycle, which cannot be decomposed at all. From that point of view, we say that G is
decomposable when χ′irr(G) is defined. Otherwise, we call G exceptional.

One first important result in the study of locally irregular decompositions is the
full characterization of exceptional graphs, due to Baudon, Bensmail, Przybyło and
Woźniak [1]. So that we can state this characterization, we first need to formally define
the following family T of graphs. The definition is recursive:

1. The triangle K3 belongs to T.
2. Every other graph in T can be constructed by 1) taking an auxiliary graph H

being either an even-length path or an odd-length path with a triangle glued to
one of its ends, then 2) choosing a graph G ∈ T containing a triangle with at least
one vertex, say v, of degree 2 in G, and finally 3) identifying v with a vertex of
degree 1 of H.

The full characterization of exceptional graphs is then the following:

Theorem 1.1 (Baudon, Bensmail, Przybyło, Woźniak [1]). A connected graph G is
exceptional if and only if G is either 1 ) an odd-length path, 2 ) an odd-length cycle, or
3 ) a member of T.

Let us emphasize that all exceptional graphs are subcubic (i.e., have maximum degree
at most 3), and are of odd size (number of edges). For these main reasons, we believe
that understanding locally irregular decompositions of subcubic graphs is of prime
importance.

Concerning decomposable graphs, the main conjecture is that they should admit
decompositions into at most three locally irregular graphs.

Conjecture 1.2 (Baudon, Bensmail, Przybyło, Woźniak [1]). For every decomposable
graph G, we have χ′irr(G) ≤ 3.
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Conjecture 1.2 was verified for several classes of graphs, including decomposable trees
(i.e., trees not being an odd-length path), decomposable complete graphs (i.e., Kn with
n ≥ 4), and some classes of decomposable bipartite graphs and Cartesian products [1].
Using probabilistic methods, Conjecture 1.2 has also been verified for regular graphs
with degree at least 107 [1], and for graphs with minimum degree at least 1010 [8] (by
Przybyło). Let us further point out that the bound in Conjecture 1.2, if true, would
be best possible, as some decomposable graphs, just as e.g. decomposable complete
graphs or cycles with length congruent to 2 modulo 4, cannot be decomposed into two
locally irregular graphs only. In general, Baudon, Bensmail and Sopena [2] showed
that determining the irregular chromatic index of a given graph is an NP-complete
problem.

At that moment, though, it was not known whether χ′irr is, in general, bounded
above by a constant. This was also not known in the particular case of decomposable
bipartite graphs, for which we still do not know whether Conjecture 1.2 holds. These
two questions were later considered by Bensmail, Merker and Thomassen [3], who
proved the following result.

Theorem 1.3 (Bensmail, Merker, Thomassen [3]). For every decomposable graph G,
we have χ′irr(G) ≤ 328. Furthermore, if G is bipartite, then we have χ′irr(G) ≤ 10.

In this paper, we consider Conjecture 1.2 in the context of bounded-degree graphs,
giving a special focus on subcubic graphs. One first point for that is that it is still
not known whether decomposable subcubic graphs verify Conjecture 1.2. Another
important motivation is that subcubic graphs are intimately related to exceptional
graphs, as all exceptional graphs are subcubic. For these two reasons, it is interesting
to understand how locally irregular decompositions behave in subcubic graphs.

Our work is organized as follows. In Section 2, we start by recalling some arguments
and results from [3] that are used in our proofs, and which we also use to deduce a first
upper bound on the irregular chromatic index of decomposable bounded-degree graphs.
In the case of decomposable subcubic graphs G, this yields that χ′irr(G) ≤ 7 always
holds. Through a more involved proof, we decrease, in Section 3, this bound down to 5.
In Section 4, we further decrease this bound down to 4 for decomposable subcubic
graphs with maximum average degree less than 12

5 . We then consider, in Sections 5
and 6, two relaxed versions of Conjecture 1.2 that were considered by Bensmail and
Stevens [4], where one allows locally irregular decompositions to also induce subgraphs
with regular connected components. We show that, in this context, the two relaxations
of Conjecture 1.2 are true for subcubic graphs. We end up this paper in Section 7,
where we gather some possible directions for future work.

Right before the submission of the current paper, the authors have been notified
of the appearance, on arXiv [7], of a new paper by Lužar, Przybyło and Soták. In that
paper, the bounds in Theorem 1.3 have been reduced to 220 and 7, respectively. It was
also proved that χ′irr(G) ≤ 4 holds for every decomposable subcubic graph G, which
improves our main results in Section 3, and partially those in Section 4. However,
the results in the current paper and [7] were obtained independently, and the proof
arguments we use are different from those from [7], and may thus be of interest for
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future works on locally irregular decompositions. Furthermore, to the best of our
knowledge, the questions we consider in Sections 5 and 6 have not been considered by
other authors.

2. LOCALLY IRREGULAR DECOMPOSITIONS
OF BOUNDED-DEGREE GRAPHS

One first ingredient in the proof of Theorem 1.3 is a general reduction of Conjecture 1.2
to graphs with even size. We generalize it in the following way, where, by a hereditary
family of graphs, we mean a family of graphs that is closed under taking subgraphs.

Theorem 2.1 (Bensmail, Merker, Thomassen [3]). Let G be a hereditary family of
graphs. Then, we have

max {χ′irr(G) : G ∈ G is decomposable} ≤ max {χ′irr(G) : G ∈ G has even size}+ 1.

Hence, in order to exhibit constant upper bounds on the irregular chromatic index
of decomposable graphs among a class G, one may focus on the even-size graphs of
G only. One convenient point for focusing on even-size graphs is that they are all
decomposable. In particular, when considering an even-size subgraph of a graph, we do
not have to wonder about whether it is exceptional or not.

The proof of Theorem 2.1 relies on the following two lemmas, which we use in
the next section.

Lemma 2.2 (Bensmail, Merker, Thomassen [3]). Let G be a connected graph with
even size. Then, for every vertex v of G, there is a path P of length 2 in G, such that
P contains v, and all connected components of G− E(P ) have even size.

Recall that, when referring to a claw, we mean the star K1,3 on 4 vertices.

Lemma 2.3 (Bensmail, Merker, Thomassen [3]). Let G be a decomposable connected
graph with odd size. Then, there is, in G, a claw H with 0 or 2 of its edges subdivided,
such that all connected components of G− E(H) have even size.

Clearly, the graph property “being of maximum degree at most k” is a hereditary
property. Thus, using Theorem 2.1 and Lemma 2.2, we can already state a general
upper bound on the irregular chromatic index of a decomposable graph with given
maximum degree. Throughout this paper, by a k-vertex (resp. k−-vertex, k+-vertex),
we refer to a vertex with degree k (resp. at most k, at least k).

Observation 2.4. For every connected graph G with even size, we have
χ′irr(G) ≤ 3∆(G)− 3.

Proof. We prove the claim by induction on |V (G)|+ |E(G)|. As it can easily be verified
whenever G is small, we proceed with the inductive step. Let v be a ∆(G)-vertex of G.
According to Lemma 2.2, we can find, in G, a path P of length 2 such that P contains
v, and all connected components of G′ := G−E(P ) have even size. Since G′ is smaller
than G, all its connected components have even size, and ∆(G′) ≤ ∆(G), there exists
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a locally irregular (3∆(G)− 3)-edge-colouring of G′. By that edge-colouring, there is
necessarily, in G, at least one of the 3∆(G)− 3 colours, say α, which is not assigned to
any edge incident to the vertices of P . Hence, by assigning colour α to the edges of P ,
we get a locally irregular (3∆(G)− 3)-edge-colouring of G, since a path of length 2 is
locally irregular.

Corollary 2.5. For every decomposable graph G, we have χ′irr(G) ≤ 3∆(G)− 2.

3. LOCALLY IRREGULAR DECOMPOSITIONS OF SUBCUBIC GRAPHS

Concerning lower bounds on the maximum irregular chromatic index of a decompos-
able subcubic graph, let us first mention that there are infinitely many subcubic
graphs G verifying χ′irr(G) = 3. This is, in particular, the case for cycles with
length congruent to 2 modulo 4 (see [1]). It is actually NP-complete to decide
whether a given cubic graph G verifies χ′irr(G) ≤ 2, implying that much more
subcubic graphs, with possibly a more complex structure, can have irregular chro-
matic index 3. This follows from a result of Dehghan, Sadeghi and Ahadi [5],
who proved, in the context of the 1-2-3 Conjecture, that deciding whether a cu-
bic graph has a neighbour-sum-distinguishing 2-edge-weighting is an NP-complete
problem. This result implies exactly the claim above, as neighbour-sum-distinguishing
2-edge-weightings and locally irregular 2-edge-colourings are equivalent notions in
regular graphs (see [1]).

We now turn our attention towards upper bounds on the irregular chromatic
index of decomposable subcubic graphs. According to Observation 2.4, we know that
connected subcubic graphs with even size have irregular chromatic index at most 6.
From that, we get, according to Corollary 2.5, that decomposable subcubic graphs
have irregular chromatic index at most 7. In this section, we decrease these two bounds
to 4 and 5, respectively. We actually focus on connected subcubic graphs with even size
that are strictly subcubic, meaning that they are not cubic. By proving that they have
irregular chromatic index at most 4, we are then able to prove the upper bound 5 on
the irregular chromatic index of both cubic graphs with even size, and decomposable
(not necessarily strictly) subcubic graphs with odd size.

Theorem 3.1. For every connected strictly subcubic graph G with even size, we have
χ′irr(G) ≤ 4.

Proof. Let G be a counterexample to the claim that is minimal in terms of
|V (G)|+ |E(G)|. In other words, we have χ′irr(G) > 4, and every smaller connected
strictly subcubic graph with even size has irregular chromatic index at most 4. Our
proof consists in showing that G cannot contain certain configurations, until we get to
the point where G is shown to be cubic, a contradiction.

Recall that a bridge of a graph refers to an edge whose deletion disconnects the
graph. We start off by showing that G cannot contain non-pendant bridges, where
by a pendant bridge we mean a bridge one of whose end is a 1-vertex. In other words,
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a pendant bridge is a pendant edge, and a non-pendant bridge is a bridge whose
deletion results into two connected components having edges.

Claim 3.2. The graph G has no non-pendant bridge.

Proof. Assume, for a contradiction, that G has a non-pendant bridge, i.e., an edge uv
such that G−uv has two connected components Gu and Gv with |E(Gu)|, |E(Gv)| > 0.
Further assume that u belongs to Gu while v belongs to Gv. Since G has even size,
we have that |E(Gu)| + |E(Gv)| is odd. We may hence assume that Gu has even
size, while Gv has odd size. Since Gu and Gv + uv are smaller than G, are strictly
subcubic and of even size, we have χ′irr(Gu), χ′irr(Gv + uv) ≤ 4 due to the minimality
of G. Hence, there exist a locally irregular 4-edge-colouring φu of Gu, and a locally
irregular 4-edge-colouring φv of Gv + uv. Since dGu

(u) ≤ 2, and we can freely permute
any two colours assigned by φu to the edges of Gu, we can make sure that φu assigns
colours among {1, 2} to the edges of Gu incident to u. Similarly, since dGv+uv(u) = 1,
and we can freely permute the colours assigned by φv to the edges of Gv + uv,
we can make sure that φv(uv) = 3. Clearly, φu and φv give rise to a locally irregular
4-edge-colouring of G, a contradiction.

We now show that G cannot contain pendant bridges as well. In the upcoming proof,
and throughout this paper, whenever considering a subgraph obtained by removing
edges, we also remove its isolated vertices, if any.

Claim 3.3. The graph G has no 1-vertex.

Proof. Assume the contrary, and let uv be an edge of G such that d(u) = 1. We
must have d(v) = 3, as otherwise d(v) = 2 and the other edge incident to v would be
a non-pendant bridge. Let w1 and w2 denote the two neighbours of v different from u.
Consider the graph G′ := G− uv − vw1. Note that G′ is connected as otherwise vw1
would be a non-pendant bridge of G whose existence would contradict Claim 3.2.
Hence G′ is a strictly subcubic graph with even size, and smaller than G. There hence
exists a locally irregular 4-edge-colouring of G′. By this edge-colouring, the vertices
u, v and w1, because dG′(u) = 0, dG′(v) = 1 and dG′(w1) ≤ 2, are incident to at
most three different colours. A non-used colour can hence be assigned to uv and vw1,
resulting in a locally irregular 4-edge-colouring of G, again a contradiction.

We gather previous Claims 3.2 and 3.3 in the following way:

Claim 3.4. The graph G has no bridge.

Our goal now is to show that G has no 2-vertex. To that aim, we first show that G
cannot have small cycles, namely triangles (C3’s) and squares (C4’s).

Claim 3.5. The graph G has no triangle.

Proof. Assume the contrary, and let C := uvwu be a triangle of G. If one vertex,
say u, of C is a 2-vertex, then consider G′ := G− uv − uw. That graph is a strictly
subcubic graph, with even size and fewer vertices and edges than G, which hence
admits a locally irregular 4-edge-colouring. Since dG′(v), dG′(w) ≤ 2, at most two
different colours are assigned to the edges incident to v and w in G′. This is because
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a locally irregular graph cannot include a connected component isomorphic to K2.
We can thus assign a non-used colour to uv and uw, resulting in a locally irregular
4-edge-colouring of G, a contradiction.

Assume now that d(u) = d(v) = d(w) = 3. We note that if removing any of the
2-paths vuw, uwv or uwv from G results in a connected graph, then we can deduce
a locally irregular 4-edge-colouring of the remaining graph, having the additional
property that at most three colours are assigned to the at most four remaining edges
incident to u, v and w. This is again because a locally irregular graph cannot have
a connected component isomorphic to K2. Such a colouring can hence be extended to
the removed 2-path using one of the non-used colours, hence to G, a contradiction.
Thus, removing any two edges among {vu, uw,wv} disconnects G. But this contradicts
Claim 3.4, as this implies that every edge not in C and incident to C (there at three
of them) is a bridge (either pendant or non-pendant). So C cannot exist.

Claim 3.6. The graph G has no square.

Proof. Assume the contrary, and let C := uvwxu be a square of G. First assume that
C has at least one 2-vertex; without loss of generality, we may assume that d(u) = 2.
Consider the graph G′ := G − ux − uv; this graph is connected, has even size, and
is smaller than G. Therefore, it admits a locally irregular 4-edge-colouring. If one of
the four colours is not assigned to one of the at most four edges incident to x and v
in G′, then we can obtain a locally irregular 4-edge-colouring of G by assigning the
non-used colour to ux and uv. So we may assume that dG(v) = dG(x) = 3, and that
all four edges incident to v and x in G′ are assigned different colours. But then, in the
4-edge-colouring, necessarily one of wx and wv is isolated in the subgraph induced by
its assigned colour, implying that this subgraph is not locally irregular, thus that the
4-edge-colouring is not locally irregular, a contradiction. So, necessarily, one of the four
colours does not appear around x and v in G′, and the previous case applies.

Assume now that d(u) = d(v) = d(w) = d(x) = 3. We denote by u′, v′, w′, x′,
respectively, the neighbour of u, v, w, x, respectively, which does not belong to C.
Note that G′ := G− ux− uv remains connected as otherwise uu′ would be a bridge
in G (contradicting Claim 3.4). Since G′ is of even size and is smaller than G, it
admits a locally irregular 4-edge-colouring φ. We show that φ can always be extended
to a locally irregular 4-edge-colouring of G, a contradiction.

Similarly as in a previous case, we may assume that φ assigns each of the four
colours to at least one edge incident to u, v and x in G′. Note that there are exactly
five such edges, as G is simple and does not have triangles by Claim 3.5 (in particular,
v′ 6= x). Assume, without loss of generality, that φ(uu′) = 1. Note first that we cannot
have φ(vw) = 1 or φ(wx) = 1. Indeed, in such a situation (say φ(wx) = 1), so that all
four colours appear in the neighbourhood of u, v, x, one would need, without loss of
generality, φ(xx′) = 2, φ(vw) = 3 and φ(vv′) = 4. But then either wx is an isolated
edge in the 1-subgraph1), or vw is an isolated edge in the 3-subgraph, contradicting
the fact that φ is locally irregular.

1)Given any colour α assigned by an edge-colouring, when mentioning the α-subgraph, we refer to
the subgraph whose edges are the ones assigned colour α.
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So we may assume that 1 6∈ {φ(vw), φ(wx)}. We consider two cases depending on
whether φ(vw) and φ(wx) are equal or not.
Case 1. φ(vw) 6= φ(wx). Without loss of generality, assume that φ(vw) = 3 while
φ(wx) = 2, and also that φ(xx′) = 4 (since colour 4 appears in the neighbourhood of
u, v, x). Because the 2-subgraph is locally irregular, we necessarily have φ(ww′) = 2,
which implies, because the 3-subgraph is locally irregular, φ(vv′) = 3. Therefore, if u′ is
a 2-vertex in the 1-subgraph, then we can extend φ to G by setting φ(ux) = φ(uv) = 1.
So assume u′ is a 3-vertex in the 1-subgraph. Analogously, if v′ is not a 3-vertex in the
3-subgraph, then we can extend φ to G by setting φ(uv) = 3 and φ(ux) = 1. So assume
v′ is a 3-vertex in the 3-subgraph. Now, if w′ is not a 3-vertex in the 2-subgraph, then
we can extend φ to G by setting φ(wv) = φ(wx) = 2, and φ(ux) = 1 and φ(uv) = 3.
So assume that w′ is a 3-vertex in the 2-subgraph. Again, φ can be extended to G by
setting φ(wv) = φ(wx) = 1, and φ(ux) = φ(uv) = 2.
Case 2. φ(vw) = φ(wx). We may assume that φ(vw) = φ(wx) = 2, and that φ(vv′) = 4
and φ(xx′) = 3 (because all four colours appear around u, v, x). As in the previous
case, we may assume that u′ is a 3-vertex in the 1-subgraph. If w is a 3-vertex in the
2-subgraph, then φ can be extended to G by setting φ(ux) = 1 and φ(uv) = 2. So
assume that w is a 2-vertex in the 2-subgraph. Similarly, if x′ is a 3-vertex in the
3-subgraph, then we can extend the colouring by setting φ(xu) = 3 and φ(uv) = 1.
So assume that x′ is a 2-vertex in the 3-subgraph. A similar argument shows that we
may as well assume that v′ is a 2-vertex in the 4-subgraph. Now consider the value
of φ(ww′). On the one hand, if φ(ww′) = 1, then φ can be extended to G by setting
φ(xw) = φ(xu) = 3, and φ(vw) = φ(vu) = 4. On the other hand, if φ(ww′) 6= 1, then
φ can be extended to G by setting φ(ux) = φ(uv) = 2 and φ(wx) = φ(wv) = 1.

In each case, φ can be extended to a locally irregular 4-edge-colouring of G,
a contradiction. So G cannot contain a square.

We now focus on the 2-vertices of G, which exist, since G is strictly subcubic and
has no 1-vertex (Claim 3.3).

Claim 3.7. The graph G has no neighbouring 2-vertices.

Proof. Assume G has two adjacent 2-vertices u and v, and let u′uvv′ be the induced
path of length 3 of G containing u and v. Here, we consider the graph G′ := G−u′u−uv.
This graph is connected, as otherwise u′u would be a bridge of G, contradicting
Claim 3.4. Furthermore, G′ has even size and is smaller than G. Hence, there exists
a locally irregular 4-edge-colouring of G′. Since, in G′, the vertices u′ and v are
a 2−-vertex and a 1-vertex, respectively, that edge-colouring assigns at most three
different colours to edges incident to u′ and v in G′. So we can assign a non-used
colour to u′u and uv, which results in a locally irregular 4-edge-colouring of G,
a contradiction.

Claim 3.8. The graph G has no 3-vertex adjacent to two 2-vertices.

Proof. Assume, for contradiction, that G has a 3-vertex v adjacent to two 2-vertices
u1, u2 and another 2+-vertex w. Consider the graph G′ := G− vu1 − vu2. If G′ is not
connected, then necessarily w belongs to the same connected component as one of
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u1 and u2 (as, otherwise, vw would be a bridge in G, contradicting Claim 3.4). Actually,
w belongs to the same connected component as only one of u1 and u2, as otherwise G′
would be connected. Assume without loss of generality that w and u2 belong to the
same connected component of G′, while u1 belongs to another connected component.
But then vu1 is a bridge in G, which contradicts Claim 3.4.

So G′ is necessarily connected. Furthermore, it has even size and is smaller
than G. Hence, there exists a locally irregular 4-edge-colouring of G′. Since
dG(u1) = dG(u2) = 2, by that edge-colouring, at most three different colours are
assigned to the edges incident to v, u1 and u2 in G′. There is thus a non-used colour
that can be assigned to vu1 and vu2, resulting in a locally irregular 4-edge-colouring
of G. This is a contradiction.

We are now ready to conclude the proof, by raising a final contradiction. Since G
is strictly subcubic and δ(G) > 1, there is a 2-vertex v in G. Let u1 and u2 be the two
neighbours of v in G. Because G has no triangle by Claim 3.5, the vertices u1 and u2
are not joined by an edge. Furthermore, since G has no 1-vertex by Claim 3.3, nor
neighbouring 2-vertices by Claim 3.7, we have d(u1) = d(u2) = 3. So let w1, w2 denote
the two neighbours of u1 different from v, and w3, w4 denote the two neighbours of u2
different from v. Since G has no square by Claim 3.6, we have N(u1) ∩N(u2) = {v}.

By symmetry, and because G has no bridge, we may assume that, in G−{v, u1, u2},
vertices w1 and w3 are in a same connected component, and w2 and w4 are in a same
(possibly different) connected component. Also, the two paths P1 := w1u1vu2w3 and
P2 := w1u1vu2w4 are symmetric, and it is easy to verify that, for some i = 1, 2, each
connected component of G− E(Pi) has an even number of edges.

Assume, without loss of generality, that P1 has that property, and let G′ :=
G − E(P1). Remember that G′ can have up to two connected components, each of
which has even size. Since G′ is strictly subcubic, smaller than G, and is of even size,
there exists a locally irregular 4-edge-colouring φ of G′. We extend φ to G, so that
a contradiction is obtained.

Since dG′(w1) ≤ 2 and dG′(u1) = 1, the vertices w1 and u1 are incident to at most
three edge colours by φ, namely the colours assigned to u1w2 and to the at most two
edges incident to w1 in G′. So there is a colour α1 ∈ {1, 2, 3, 4} such that, when
assigning colour α1 to w1u1 and u1v, those two edges induce a path of length 2 in
the α1-subgraph. Analogously, there is a colour α2 ∈ {1, 2, 3, 4} such that, when
assigning colour α2 to w4u2 and u2v, those two edges induce a path of length 2 in
the α2-subgraph. If α1 6= α2, then we get a locally irregular 4-edge-colouring of G by
assigning colour α1 to w1u1 and u1v, and colour α2 to w4u2 and u2v.

Assume thus that α1 = α2. Let β1 := φ(u1w2). Recall that β1 6= α1. We may
assume that β1 is not assigned to any edge incident to w1 in G′, as otherwise there
would be another colour, different from α2, that can be assigned to w1u1 and u1v,
and the previous extension strategy could be applied. We note that if w2 is a 2-vertex
in the β1-subgraph of G′ induced by φ, then a correct extension of φ is obtained by
assigning colour β1 to w1u1 and u1v, and colour α2 to w4u2 and u2v. Analogously,
we can deduce a correct extension when w3 is a 2-vertex in the β2-subgraph induced
by φ, where β2 := φ(u2w3) (unless β2 appears on an edge incident to w4, in which
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case there would be another colour, different from α1, available to colour w4u2 and
u2v). Therefore, we may assume that w2 is a 3-vertex in the β1-subgraph induced by
φ, and w3 is a 3-vertex in the β2-subgraph induced by φ. But, then, a locally irregular
4-edge-colouring of G is obtained by assigning colour β1 to u1w1, colour β2 to u2w4,
and colour α1 to vu1 and vu2.

We now use Theorem 3.1 to derive corollaries for decomposable subcubic graphs
with odd size, and cubic graphs with even size.
Corollary 3.9. For every connected decomposable strictly subcubic graph G with odd
size, we have χ′irr(G) ≤ 5.
Proof. According to Lemma 2.3, one can find, in G, a claw H with 0 or 2 of its
edges subdivided such that G′ := G − E(H) has connected components with even
size only. All connected components of G′ are strictly subcubic. So, every connected
component of G′ is a strictly subcubic graph with even size. Hence, there exists
a locally irregular 4-edge-colouring of G′ according to Theorem 3.1. We can extend it
to a locally irregular 5-edge-colouring of G by assigning colour 5 to all edges of H,
which is locally irregular.

Corollary 3.10. For every connected cubic graph G, we have χ′irr(G) ≤ 5.
Proof. If G has odd size, then the proof can be conducted similarly as the proof of
Corollary 3.9. So assume G has even size. Then, according to Lemma 2.2, one can find,
in G, a path P with length 2 such that all connected components of G′ := G− E(P )
have even size (just apply the lemma with any vertex). Again, all connected components
of G′ are strictly subcubic and of even size. So, similarly as in the proof of Corollary 3.9,
we can deduce a locally irregular 4-edge-colouring of G′ (from Theorem 3.1), which we
can extend to the edges of P using colour 5, hence to G.

We summarize Theorem 3.1 and Corollaries 3.9 and 3.10 in the following result,
which improves Corollary 2.5 for subcubic graphs.
Theorem 3.11. For every decomposable subcubic graph G, we have χ′irr(G) ≤ 5.

4. LOCALLY IRREGULAR DECOMPOSITIONS OF SUBCUBIC GRAPHS
WITH MAXIMUM AVERAGE DEGREE LESS THAN 12

5

In this section, we focus on decomposable graphs with maximum average degree less
than 12

5 , where the maximum average degree of a given graph G is

mad(G) := max
{

2|E(H)|
|V (H)| , H is a subgraph of G

}
.

More precisely, we again focus on connected subcubic graphs with even size, and prove
the following, which is our main result in this section.
Theorem 4.1. For every connected subcubic graph G with even size and mad(G) < 12

5 ,
we have χ′irr(G) ≤ 3.
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The upcoming folklore lemma gives a relationship between the maximum average
degree and the girth of a planar graph. We provide a short proof for the readers’
convenience. Recall that the girth of a graph G is the length of a shortest cycle in G.

Lemma 4.2. For every planar graph G with girth at least g, we have mad(G) < 2g
g−2 .

Proof. Let G be a connected planar graph with girth g. Assume g is finite, as, otherwise,
G would be a tree and the result holds. Let H be a subgraph of G. Note that H is
planar and has girth at least g. Hence, g|F (H)| ≤ 2|E(H)|, where F (H) is the set of
faces of H. From Euler’s Formula, we obtain

2g − g|V (H)|+ g|E(H)| = g|F (H)| ≤ 2|E(H)|.

Hence,
2g + (g − 2)|E(H)| ≤ g|V (H)|,

which yields
2|E(H)|(2g + (g − 2)|E(H)|) ≤ 2|E(H)|g|V (H)|,

and eventually that

2|E(H)|
|V (H)| ≤

2g|E(H)|
2g + (g − 2)|E(H)| <

2g
g − 2

holds. Since this is true for every subgraph H of G, the claim is proved.

Hence, from Theorem 4.1 and Lemma 4.2, we deduce the following corollary.

Corollary 4.3. For every connected planar subcubic graph G with even size and girth
g(G) ≥ 12, we have χ′irr(G) ≤ 3.

Since edge removals cannot increase the maximum average degree of a graph,
Theorem 4.1 can be combined with Theorem 2.1, which yields the following (improving
Theorem 3.11 for some classes of decomposable subcubic graphs):

Theorem 4.4. For every decomposable subcubic graph G with mad(G) < 12
5 , we have

χ′irr(G) ≤ 4.

Before proceeding with the proof of Theorem 4.1, let us introduce a few definitions
and notations that we use throughout. A 3k-vertex is a 3-vertex adjacent to exactly
k 2-vertices. A bad 2-vertex is a 2-vertex adjacent to another 2-vertex, while a good
2-vertex is a 2-vertex adjacent to two 3-vertices. A light 3-vertex is a 3-vertex adjacent
to a 1-vertex, while a heavy 3-vertex is a 3-vertex adjacent to no 2−-vertex. A bad
3-vertex is a 3-vertex adjacent to two bad 2-vertices. A vertex is called deficient if it is
a 2-vertex (bad or good) or a light 3-vertex.

Proof of Theorem 4.1. The proof is done by induction. Assuming there exists a min-
imum counterexample H to the claim, we prove that H cannot exist. To that aim,
we go through two steps. The first step consists in proving the non-existence of some
set S of subgraphs in H. Based on the resulting structural properties of H, we then,
through a second step, use the discharging technique in order to obtain a contradiction



806 O. Baudon, J. Bensmail, H. Hocquard, M. Senhaji, and É. Sopena

to the fact that H has small maximum average degree. More precisely, during this
second step, we first define a weight function ω : V (H)→ R with ω(v) := d(v)− 12

5 .
An important observation is that, by our hypothesis on the maximum average degree
of H, the total sum of weights must be strictly negative, since

∑

v∈V (H)

ω(v) =
∑

v∈V (H)

d(v)− 12
5 · |V (H)|

and ∑

v∈V (H)

d(v) ≤ |V (H)| ·mad(H) < 12
5 · |V (H)|.

Next, we define discharging rules to redistribute weights among vertices, resulting, once
the discharging process is finished, in a new weight function ω∗. During the discharging
process, the total sum of weights is kept fixed. Nevertheless, by the non-existence
of S, it will follow that ω∗(v) ≥ 0 for all v ∈ V (H). This will lead to the following
contradiction

0 ≤
∑

v ∈V (H)

ω∗(v) =
∑

v ∈V (H)

ω(v) < 0,

contradicting the existence of H.
Structural properties

Let H be a counterexample to Theorem 4.1 minimizing |E(H)|+ |V (H)|. So, in
other words, the graph H has even size, verifies mad(H) < 12

5 and χ′irr(H) > 3, and
every proper subgraph H ′ of H with even size verifies χ′irr(H ′) ≤ 3. In particular, if we
consider a subgraph H ′ := H − E for some subset E ⊆ E(H) such that all connected
components of H ′ have even size, we get χ′irr(H ′) ≤ 3.

We start off by showing that H, because it is a minimal counterexample to
Theorem 4.1, cannot contain certain structures.

Claim 4.5. The graph H satisfies the following:
1. H does not contain a non-pendant bridge,
2. H does not contain a 1-vertex adjacent to a 2-vertex,
3. H does not contain a 3-vertex adjacent to a 1-vertex and a 2−-vertex,
4. H does not contain a path uvw where u, v, w are 2-vertices,
5. H does not contain two adjacent light 3-vertices,
6. H does not contain a 3-vertex adjacent to three 2-vertices,
7. H does not contain a 3-vertex adjacent to a bad 2-vertex and to two deficient

vertices,
8. H does not contain two adjacent 3-vertices, such that one of them is adjacent to

two bad 2-vertices, while the other one is adjacent to one deficient vertex.
Proof. We consider each of these structural properties separately.

1. It can easily be checked that the proof of Claim 3.2 can be mimicked in the
current context, and still applies, despite we here use three colours only.

2. This just follows from the fact that H has no non-pendant bridge (Claim 4.5.1).
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3. Assume H has a 3-vertex v adjacent to a 1-vertex u1 and a 2−-vertex u2.
Consider H ′ := H − vu1 − vu2. We note that H ′ remains connected as otherwise
vu2 would be a non-pendant bridge in H, contradicting Claim 4.5.1. So H ′ has even
size, verifies mad(H ′) < 12

5 , and is smaller than H. It hence admits a locally irregular
3-edge-colouring. Now, because dH′(v) = 1 and dH′(u2) ≤ 1, there are, by that
edge-colouring, at most two different colours assigned to the edges incident to v and u2
in H ′. So we can freely extend this locally irregular 3-edge-colouring to H by assigning
to vu1 and vu2 one colour non-assigned to any edge incident to v or u2 in H ′. This is
a contradiction.

4. We consider H ′ := H − uv − vw. Note that H ′ remains connected as otherwise
all four edges incident to u, v, w would be bridges of H, contradicting Claim 4.5.1
or 4.5.2. Now, a locally irregular 3-edge-colouring of H ′ can be extended to H by
assigning a same colour to uv and vw that does not appear around u or w in H ′. This
is a contradiction.

5. Assume H has two adjacent light 3-vertices v1 and v2. Let u1 and u2,
respectively, denote the 1-vertex adjacent to v1 and to v2, respectively. Let further
w denote the third neighbour of v1 different from u1 and v2. By Claim 4.5.3, we
know that d(w) = 3. Consider H ′ := H − v1v2 − v2u2. Again, H ′ is connected
as otherwise v1v2 would be a non-pendant bridge in H, contradicting Claim 4.5.1.
Thus, there exists a locally irregular 3-edge-colouring of H ′. To see that it can be
extended to v1v2 and v2u2, hence to H, we just note that, by that edge-colouring,
necessarily u1v1 and v1w are assigned the same colour. This is because dH′(u1) = 1
and dH′(v1) = 2, and a locally irregular graph cannot include a connected component
isomorphic to K2. So, by the edge-colouring of H ′, there are at most two different
colours assigned to the edges incident to v1 and v2. Therefore, a non-used colour can
freely be assigned to v1v2 and v2u2, resulting in a locally irregular 3-edge-colouring
of H, a contradiction.

6. Assume H has a 3-vertex v whose three neighbours u1, u2, u3 are 2-vertices.
Let further w1, w2, w3, respectively, denote the neighbour of u1, u2, u3, respectively,
different from v. Consider H ′ := H − vu2 − vu3. First, we claim that H ′ remains
connected. Assume the contrary. Note that the connected component C containing
v must also contain one of u2 and u3 as otherwise vu1 would be a non-pendant
bridge in H, contradicting Claim 4.5.1. So C contains v and, say, u2, while it does
not contain u3. But then vu3 has to be a non-pendant bridge in H, contradicting
Claim 4.5.1. So H ′ is indeed connected.

Because H ′ has even size, verifies mad(H ′) < 12
5 , and is smaller than H,

there is a locally irregular 3-edge-colouring φ of H ′. We extend φ to H, in the
following way. First, if one of the three colours does not appear in the neighbourhood
of u2, u3 and v, then we can freely assign that colour to both vu2 and vu3.
So, without loss of generality, we may assume φ(u1v) = 1, φ(u2w2) = 2 and
φ(u3w3) = 3. Because φ is locally irregular, necessarily we have φ(u1w1) = φ(u1v) = 1.
In particular, u1 is a 2-vertex in the 1-subgraph induced by φ. So we can extend φ
to H by just assigning colour 1 to vu2 and vu3. This is correct as v then becomes
a 3-vertex in the 1-subgraph while its neighbours are 2−-vertices. Hence, we get
a contradiction.
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7. The proof of this claim is a bit tedious as it cannot be treated using a common
argument for all cases. So, we basically have to consider all possible combinations of
deficient vertices. For the sake of legibility, we describe, for each of these cases, the
edges which should be removed from H (resulting in H ′), and how to extend a locally
irregular 3-edge-colouring φ of H ′ to H. In particular, checking whether H ′ remains
connected can be done similarly as in the previous claim.

Let v be a 3-vertex of H, and u1 be a bad 2-vertex adjacent to v. We denote by
u2 and u3 the two deficient neighbours of v different from u1. Recall that u2 and u3
cannot both be 2-vertices as otherwise v would contradict Claim 4.5.6. So, there are,
essentially, two cases to consider:

a) Both u2 and u3 are light 3-vertices. Consider H ′ := H − vu2− vu3. If a colour of φ
is not assigned to any of the edges incident to u1, u2, u3 in H ′, then we assign that
colour to vu2 and vu3. Note further that, for each of u1, u2, u3, its two incident
edges in H ′ are assigned a same colour by φ (as otherwise it would not be locally
irregular). So we may assume that the two edges incident to u1 are assigned colour 1,
the two edges incident to u2 are assigned colour 2, and the two edges incident to u3
are assigned colour 3. Then φ can be extended to H by assigning colour 1 to vu2
and vu3.

b) The vertex u2 is a light 3-vertex while u3 is a 2-vertex. ConsiderH ′ := H−vu1−vu2.
Again, if a colour by φ does not appear around v, u1 and u2, then we assign that
colour to the two removed edges. Otherwise, we again get the property that, for
each of u2, u3 and the neighbour u′1 of u1 different from v, the two incident edges
in H ′ are assigned the same colour. So, without loss of generality, we may assume
that the two edges incident to u′1 in H ′ are assigned colour 1, the two edges incident
to u2 are assigned colour 2, and the two edges incident to u3 are assigned colour 3.
Then φ can be extended to H ′ by assigning colour 3 to vu1 and vu2.

8. In the previous case, we have highlighted the fact that, if uv is an edge of H
such that d(u) > 1 and v is deficient, then, in a locally irregular edge-colouring of
a subgraph H ′ of H not containing uv, the at most two edges incident to v in H ′ are
assigned the same colour.

Assume H has two adjacent 3-vertices v1 and v2 such that v1 has a deficient
neighbour u1, while v2 is adjacent to two bad 2-vertices u2 and u3. We further denote
by w the neighbour of v1 different from u1 and v2. Due to the fact that u2 and u3
are bad 2-vertices, the only possible triangle in H[u1v1, v1v2, v2u2, v2u3] is formed
by v2, u2, u3. If this triangle exists, then we consider H ′ := H − u3u2 − u2v2, and
deduce a locally irregular 3-edge-colouring of H ′, which can easily be extended to H.
So assume that H[u1v1, v1v2, v2u2, v2u3] has not triangle, and consider H ′ := H −
u1v1− v1v2− v2u2− v2u3. First assume that H ′ remains connected. Then H ′ has even
size, satisfies mad(H) < 12

5 , and is smaller than H. It hence admits a locally irregular
3-edge-colouring, which we extend to H as follows. The idea is to colour, if possible,
u1v1 and v1v2 with a same colour, and v2u2 and v2u3 with a same colour. Note
that dH′(u1) ≤ 2 and dH′(v1) = 1; there is thus a non-used colour α that can freely
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be assigned to u1v1 and v1v2. Similarly, there is also a non-used colour α′ that can be
assigned to v2u2 and v2u3. We now note that, even if α = α′, we get a locally irregular
3-edge-colouring of H by assigning colour α to v1u1 and v1v2, and colour α′ to v2u2
and v2u3.

Lastly, assume that H ′ is not connected. The rest of the proof now goes quite
similarly as the proof of Theorem 3.1. Using similar arguments, it can be checked
that H ′ has exactly two connected components C1 and C2. In particular, each of the
Ci’s contains two of v1, u1, u2, u3 (note that if dH(w) = 1, then the configuration can
easily be treated by removing the edges v2u2 and v2u3 off H). If C1 and C2 both
have even size, then induction can be invoked, locally irregular 3-edge-colourings of
C1 and C2 yield a locally irregular 3-edge-colouring of H ′, which can be extended to
H as previously. So assume that C1 and C2 both have odd size. It can be checked
that, under all those structural properties, H can be decomposed into two graphs H1
and H2, such that V (H1) ∩ V (H2) = {v1, v2}, and v1 and v2 are 2-vertices in, say,
H1, and 1-vertices in H2. Since v1v2 cannot be a non-pendant bridge by Claim 4.5.1,
the two cases to consider, in order to construct H1 and H2, are the following:

– C1 includes u1 and u2 (while C2 includes v1 and u3): we add u1v1, v1v2 and v2u2
to C1 to obtain H1, and add v2u3 to C2 to obtain H2,

– C1 includes u1 and u3 (while C2 includes v1 and u2): we add u1v1, v1v2 and v2u3
to C1 to obtain H1, and add v2u2 to C2 to obtain H2.

Then H1 and H2, which have even size, verify mad(H1),mad(H2) < 12
5 , and are

smaller than H, admit locally irregular 3-edge-colourings φ1 and φ2 (where φi is that of
Hi), respectively. Note that, in H1, if we have φ1(v1v2) = α1, then α1 is also assigned
to one of the two edges adjacent to v1v2 in H1. In other words, by φ1, there are only
two distinct colours α1, α2 assigned to the edges incident to v1 or v2. Furthermore, we
have, without loss of generality, that v1 is only incident to edges assigned colour α1,
while v2 is incident to one edge assigned colour α1, and one edge assigned colour α2.

We would now like to permute some of the colours assigned by φ2, so that φ1 and φ2
yield a locally irregular 3-edge-colouring of H. Recall that V (H1) ∩ V (H2) = {v1, v2}
and that dH2(v1) = dH2(v2) = 1. We start by possibly permuting two colours assigned
by φ2, so that the edge incident to v2 in H2 is assigned a colour β different from α1
and α2. We then finish the permutation process, by, if needed, permuting the two
colours by φ2 different from β, so that the edge incident to v1 in H2 is assigned a colour
different from α1. Clearly, three colours are sufficient in order to obtain a correct
permutation verifying all these constraints. So we end up with a locally irregular
3-edge-colouring of H, a contradiction.

To lighten the upcoming discharging process, we will not work directly on H but
rather on a subgraph H− of H. More precisely, H− is the graph obtained from H
by removing all 1-vertices of H, i.e., H− := H − {v ∈ V (H), dH(v) = 1}. Clearly,
H− is connected and mad(H−) < 12

5 . Furthermore, from the structural properties of
H exhibited in Claim 4.5, one can easily derive the following properties of H−.
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Claim 4.6. According to Claim 4.5, the graph H− satisfies the following:

1. δ(H−) ≥ 2 (Claims 4.5.2 and 4.5.3 ),
2. H− does not contain a path uvw where u, v, w are 2-vertices (Claims 4.5.3, 4.5.4

and 4.5.5 ),
3. H− does not contain a 33-vertex adjacent to at least one bad 2-vertex (Claims 4.5.3,

4.5.5, 4.5.6 and 4.5.7 ),
4. A bad 2-vertex of H− is also a bad 2-vertex of H (Claims 4.5.3 and 4.5.5 ).

Discharging procedure
To each vertex v of H−, we assign an initial charge w(v) := dH−(v)− 12

5 . We then
carry out the discharging procedure in two steps:

Step 1. We here just apply, in H−, the following rule:

(R0) Every heavy 3-vertex gives 1
5 to each adjacent bad 3-vertex.

Once Step 1 is finished, a new weight function ω′ results. We proceed then
with Step 2:

Step 2. We here apply, in H−, the following two rules:

(R1) Every 3-vertex gives 2
5 to each adjacent bad 2-vertex.

(R2) Every 3-vertex gives 1
5 to each adjacent good 2-vertex.

Recall that we denote by ω∗ the resulting weight function. Let v ∈ V (H−)
be a k-vertex. By Claim 4.6.1, we have k ≥ 2. Now, consider the following cases:

– k = 2. Observe that ω(v) = − 2
5 . Suppose v is a bad 2-vertex. By Claim 4.6.2, the

vertex v is adjacent to a 3-vertex. Hence, by (R1), we have ω∗(v) = − 2
5 + 2

5 = 0. If
v is a good 2-vertex, then ω∗(v) = − 2

5 + 2× 1
5 = 0 by (R2).

– k = 3. Observe that ω(v) = 3
5 . To simplify the analysis, we distinguish two cases:

Case 1. Suppose first that v is adjacent to a bad 2-vertex u1. By Claim 4.6.3, all
neighbours of v cannot be 2-vertices, so v is adjacent to at most two 2-vertices
(including u1). If u1 is the only 2-vertex neighbouring v, then, by (R1), we have
ω∗(v) ≥ 3

5 −1× 2
5 = 1

5 > 0. Now assume v is adjacent to a second 2-vertex u2. If u2
is a good 2-vertex, then, by (R1) and (R2), we have ω∗(v) ≥ 3

5 − 1× 2
5 − 1× 1

5 = 0.
Now, if u2 is a bad 2-vertex, then the third neighbour (different from u1 and u2)
of v is a heavy 3-vertex, as otherwise H would contain, according to Claim 4.6.4,
the configuration described in Claim 4.5.8. So, by (R0), we have ω′(v) = 4

5 . Hence,
by (R1), we get ω∗(v) = 4

5 − 2× 2
5 = 0.

Case 2. Finally, if v is not adjacent to a bad 2-vertex, then ω∗(v) ≥ 3
5 − 3× 1

5 = 0
by (R0) and (R2).

Therefore, H− cannot exist and consequently H does not exist either. This com-
pletes the proof.
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5. K2-IRREGULAR DECOMPOSITIONS OF SUBCUBIC GRAPHS

In this section, and in Section 6 as well, we focus on two relaxations of Conjecture 1.2
considered by Bensmail and Stevens [4]. In particular, we completely verify these two
relaxations for subcubic graphs.

The idea is to study how easier it is, for proving Conjecture 1.2, to allow any locally
irregular decomposition to also include additional regular components. In this section,
we focus onK2-irregular decompositions (or, analogously,K2-irregular edge-colourings),
which are decompositions in which every part induces connected components that are
either locally irregular or isomorphic to K2. In this definition, it should be understood
that, in every subgraph induced by a part of the decomposition, there may be locally
irregular connected components, and some connected components isomorphic to K2
as well. For a given graph G, we denote by χ′K2−irr(G) the smallest number of colours
in a K2-irregular edge-colouring of G. Note that χ′K2−irr(G) is defined for every graph
G as every proper edge-colouring is K2-irregular.

Clearly, we have χ′K2−irr(G) ≤ χ′irr(G) for every decomposable graph G. Hence,
Conjecture 1.2, if true, would imply that χ′K2−irr(G) ≤ 3 holds for every graph G,
unless G is exceptional. One may thus wonder whether even χ′K2−irr(G) ≤ 2 is true
for every graph G. This is actually not the case, as, for example, χ′K2−irr(K4) = 3.
So, in the context of K2-irregular edge-colourings, the conjecture that is analogous to
Conjecture 1.2 should be the next one, which stands as a relaxation of Conjecture 1.2.

Conjecture 5.1. For every graph G, we have χ′K2−irr(G) ≤ 3.

In the following result, we show that Conjecture 5.1 admits an easy proof in
the context of subcubic graphs. Recall that this result remains best possible even
in this context because of the complete graph K4.

Theorem 5.2. For every subcubic graph G, we have χ′K2−irr(G) ≤ 3.

Proof. We prove the claim by induction on |V (G)|+ |E(G)|. As the claim can easily be
verified whenever G is small, we proceed with the general case. Consider any vertex v of
G and denote by u1, . . . , uk its neighbours, where k ≤ 3. Set G′ := G−{vu1, . . . , vuk}.
Since G′ is smaller than G, there exists a K2-irregular 3-edge-colouring of G′. Since
dG′(u1), . . . , dG′(uk) ≤ 2, there are, by the edge-colouring, at most two different colours
assigned to the edges incident to each ui in G′. For each vui, let αi denote a colour
not assigned to an edge incident to ui in G′.

Extending the 3-edge-colouring of G′ to a K2-irregular 3-edge-colouring of G can
then be done by assigning, for every i ∈ {1, . . . , k}, colour αi to vui, for the following
reasons. First of all, because, for each ui, edge vui has been assigned a colour not
incident to ui in G′, no conflict involving two vertices of G′ may arise. This is because
the degrees of the ui’s in the 1-, 2-, and 3-subgraphs of G′ that contain them are not
altered by the extension. Then, since each ui is a 1-vertex in the αi-subgraph induced
by the resulting edge-colouring of G, it cannot be that v and ui are involved in a conflict:
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the only situation where v and ui have the same degree in the αi-subgraph is when this
degree is exactly 1, in which case v and ui belong to a component isomorphic to K2
in the αi-subgraph. Thus, we necessarily end up with a K2-irregular 3-edge-colouring
of G.

6. REGULAR-IRREGULAR DECOMPOSITIONS OF SUBCUBIC GRAPHS

In this section, we focus on regular-irregular decompositions (or, analogously,
regular-irregular edge-colourings), which are more general than K2-irregular decompo-
sitions considered in Section 5. Here, we allow every subgraph induced by a part of
a decomposition to have connected components being either locally irregular or regular.
So, K2-irregular decompositions are nothing but regular-irregular decompositions
where one requires all induced regular subgraphs to be 1-regular. For a given graph
G, we denote by χ′reg−irr(G) the smallest number of colours in a regular-irregular
edge-colouring of G. Since we have χ′reg−irr(G) ≤ χ′K2−irr(G) for every graph G, again
every graph is decomposable in that manner. Note further that if G is regular, then
χ′reg−irr(G) = 1.

Regular-irregular decompositions were considered by Bensmail and Stevens [4],
who conjectured the following.
Conjecture 6.1 (Bensmail, Stevens [4]). For every graph G, we have χ′reg−irr(G) ≤ 2.

Conjecture 6.1 is known to hold for a few classes of graphs, including trees and some
other classes of bipartite graphs [4]. We here give further evidence to the conjecture
by showing it to hold for subcubic graphs as well.
Theorem 6.2. For every subcubic graph G, we have χ′reg−irr(G) ≤ 2.
Proof. The proof consists in edge-colouring with colours red and green two edge-disjoint
subgraphs C and F of G, in the following way:
1. We consider, as C, a collection of vertex-disjoint cycles of G, and assign colour, say,

red, to all edges of C.
2. Set F := G−E(C). Then, we edge-colour F in a regular-irregular way with colours

red and green, in such a way that all edges in F being adjacent, in G, to edges of
C are assigned colour green.

If F can be edge-coloured as described, then we note that the connected components
of the red subgraph induced by the edge-colouring of C are disjoint, in G, from the
connected components of the red subgraph induced by the edge-colouring of F . So
the 2-edge-colourings of C and F yield a regular-irregular 2-edge-colouring of G.

Start from C being empty, and, until this procedure cannot be repeated, pick
any cycle C of G − E(C) and move the edges of C to C. Once this process stops,
the following holds, basically because G is subcubic.

Claim 6.3. The subgraph F := G− E(C) is a forest. Furthermore, for every vertex
v of G having incident edges in C and incident edges in F , we have dC(v) = 2 and
dF (v) = 1.
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Assign colour red to all edges in C. When referring to a leaf edge of F , we mean
an edge that is incident to a leaf of F . We note that there are, in F , some leaves that
are special in the sense that they have both incident edges in C (two edges) and in F
(one leaf edge). We refer to these leaves as frontier leaves, and derive this concept to
frontier leaf edges, which are leaf edges of F whose at least one end is a frontier leaf.
Note that a connected component of F can be isomorphic to K2, in which case this
connected component is a frontier leaf edge which potentially joins two frontier leaves.

Following the explanations above, we assign colour green to all frontier leaf edges
of F . Note that F might have non-frontier leaf edges. We assign colour green to these
edges as well. It now remains to show that the non-coloured (i.e., non-leaf) edges of
F can be assigned colours red and green, without modifying the pre-colouring we
have described, in a regular-irregular way. In other words, we now want to prove
the following:

Claim 6.4. Every subcubic tree T admits a regular-irregular 2-edge-colouring, such
that all leaf edges are assigned colour 1.

Proof. All along this proof, we see T as a tree whose leaf edges have been pre-assigned
colour 1, and we extend this pre-colouring until a regular-irregular 2-edge-colouring is
attained.

The proof is by induction on the size of T . As base cases, we note that the claim is
true whenever |E(T )| ≤ 3. Indeed, if T has diameter at most 2, then T is a star on at
most three edges being all assigned colour 1. The 1-subgraph is then exactly T , which
is either regular (one edge) or locally irregular (two or three edges). On the other
hand, if T has diameter 3, then T is the path of length 3 whose two end-edges are
assigned colour 1. We here get a regular-irregular 2-edge-colouring (with the desired
additional property) of T by assigning colour 2 to the middle-edge.

Assume thus that the claim holds whenever |E(T )| is smaller than some value, and
consider the next value of |E(T )|. To begin with, if ∆(T ) ≤ 2, then T is a path whose
two end-edges are assigned colour 1. If the length of T is odd, then we obtain the desired
regular-irregular 2-edge-colouring of T by assigning colours 1 and 2 alternately, from
one end-edge to the other. When the length of T is even, the claimed edge-colouring
can be obtained by applying this colouring scheme starting from the second edge of T .
In particular, the first two edges of T get assigned colour 1 and thus induce a path of
length 2, which is locally irregular, in the 1-subgraph.

We may thus assume that ∆(T ) = 3 since T is subcubic. By a pendant path of T ,
we refer to a maximal path u1u2 . . . uk of T such that u1 is a leaf, all internal vertices
u2, . . . , uk−1 are 2-vertices, and uk is a 3-vertex. Since T has 3-vertices, there are at
least three pendant paths in T . If T has a pendant path P with length at least 3, then
the desired regular-irregular 2-edge-colouring of T can be obtained in the following
way. Let P := u1 . . . uk where d(u1) = 1 and d(uk) = 3. Due to the length of P , we
have k ≥ 4. We consider T ′ := T −u1u2−u2u3 and assign colour 1 to u3u4 in T ′. Since
T ′ is subcubic, smaller than T , and has all its leaf edges assigned colour 1, there is, by
the induction hypothesis, a regular-irregular 2-edge-colouring of T ′ which is as claimed.
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This edge-colouring can be extended to the claimed regular-irregular 2-edge-colouring
of T by assigning colour 2 to u2u3 and colour 1 to u1u2.

We may thus assume that all pendant paths of T have length 1 or 2. If T has
only one vertex v with d(v) = 3, then T is a subdivided claw all of whose leaf edges
are assigned colour 1. We here extend the pre-colouring by just assigning colour 2 to
all non-coloured edges of T . Note that these edges are edges that are incident to v
and belong to pendant paths with length 2. The resulting edge-colouring is clearly
regular-irregular since the 1- and 2-subgraphs include stars only.

Now assume that T has at least two 3-vertices, and let r denote any of them. We
designate r as the root of T , which defines, in the usual way, a (virtual) orientation
of T from its root to its leaves. Following that orientation, we say that a vertex v 6= r of
T is a multifather if v has exactly two children (and is hence a 3-vertex as v also has
a father). A multifather of T is said last if all of its descendants are 2−-vertices. In
other words, a last multifather is a 3-vertex with two pendant paths attached (which
are of length 1 or 2). Furthermore, a last multifather is said deepest if it is at maximum
distance from r in T .

We first claim that if T has a deepest last multifather v such that at least one
of its two attached pendant paths P1 and P2 has length 2, then we can deduce
the desired regular-irregular 2-edge-colouring of T . This follows from the following
arguments. First assume that P1 := u1u2v and P2 := u′1u

′
2v have length 2. In that

case, we consider T ′ := T − u1u2 − u2v − u′1u′2 − u′2v. Assuming f(v) denotes the
father of v in T , we assign colour 1 to vf(v) in T ′. Since T ′ is subcubic, smaller than
T , and has all of its leaf edges assigned colour 1, we can deduce a regular-irregular
2-edge-colouring of T ′ which is as required. This edge-colouring can be extended to
T by assigning colour 2 to vu2 and vu′2 (and still assigning colour 1 to u1u2 and
u′1u
′
2). Now assume that P2 := u′1v has length 1 (while P1 is as previously). We

here consider T ′ := T − u1u2 − u2v − u′1v in which vf(v) is assigned colour 1, and
a regular-irregular 2-edge-colouring of T ′ (with the additional property). We now
extend that edge-colouring to T . If, by assigning colour 2 to u2v (and still assigning
colour 1 to u1u2 and u′1v), we do not get a regular-irregular edge-colouring of T , that is
only because, in the resulting 1-subgraph, f(v) and v are 2-vertices. In that situation,
the desired regular-irregular 2-edge-colouring of T is obtained by assigning colour 1
to u2v.

Hence, we may assume that P1 := u1v and P2 := u′1v have length 1. Note that
if f(v) = r, then, by definition of a deepest last multifather, every vertex of T is at
distance at most 2 from r. In that situation, again, by assigning colour 2 to all non-leaf
edges of T , we directly get a regular-irregular 2-edge-colouring which is as desired.
So assume f(v) 6= r, meaning that f(v) has a father f(f(v)) in T . In case f(v) is
a 2-vertex, i.e., is not a multifather, we consider T ′ := T − vu1− vu′1− vf(v), in which
the edge f(v)f(f(v)) is assigned colour 1. Here, a regular-irregular 2-edge-colouring of
T is obtained by assigning colour 2 to vf(v) and colour 1 to vu1 and vu′1.

When d(f(v)) = 3, there are, according to all assumptions we have made so far,
three possibilities concerning the child v′ of f(v) different from v: either 1) v′ is a leaf,
2) v′ has one child w1 being a leaf, or 3) v′ is a deepest last multifather with two
children w1 and w′1 that are leaves.
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In case 1), we consider T ′ := T − vu1 − vu′1 − vf(v). According to the induction
hypothesis, T ′ admits a regular-irregular 2-edge-colouring which is as desired. Recall
that v′f(v) is assigned colour 1 by that colouring. On the one hand, if f(v)f(f(v))
is assigned colour 1, then we can extend the colouring to T by assigning colour 2 to
vf(v) and colour 1 to vu1 and vu′1. On the second hand, if f(v)f(f(v)) is assigned
colour 2, then we get a correct extension by assigning colour 1 to all of vf(v), vu1
and vu′1.

In case 2), we consider T ′ := T−vu1−vu′1 and assign colour 1 to the leaf edge vf(v)
of T ′. Again, according to the induction hypothesis, we can find a regular-irregular
2-edge-colouring of T ′ which is as desired. Note that if f(v) is not a 3-vertex in the
1-subgraph induced by that edge-colouring, then we can extend the edge-colouring to
T by assigning colour 1 to both vu1 and vu′1. So we may assume that all three edges
incident to f(v) in T ′ are assigned colour 1. In that case, by assigning colour 1 to vu1
and vu′1, and modifying the colour of vf(v) and v′f(v) to 2, we get a 2-edge-colouring
of T which is regular-irregular and as desired. In particular, the connected component
of the 1-subgraph that contains f(v) remains locally irregular, or becomes a K2.

Finally, in case 3), we again consider T ′ := T − vu1 − vu′1 in which the leaf edge
vf(v) is assigned colour 1. Note that f(v) cannot be a 3-vertex in the 1-subgraph
induced by any given regular-irregular 2-edge-colouring of T ′ since otherwise f(v) and
v′ would be adjacent 3-vertices in the 1-subgraph. So, necessarily, f(v) is a 2−-vertex
in the 1-subgraph, and the edge-colouring can be extended to T by assigning colour 1
to vu1 and vu′1.

Thus, a regular-irregular 2-edge-colouring of T with the desired additional property
always exists. This concludes the proof.

Following Claim 6.4, there is thus a regular-irregular edge-colouring of F with
colours red and green, such that all frontier leaf edges are green. Together with the
edges of C being assigned colour red, this yields the claimed regular-irregular
2-edge-colouring of G, hence our conclusion.

7. CONCLUSION

In this work, we have studied locally irregular decompositions in subcubic graphs.
Although we did not manage to prove Conjecture 1.2 for decomposable subcubic
graphs, we have showed that they decompose into at most 5 locally irregular subgraphs,
which improves by 2 the straight upper bound given by Corollary 2.5.

One first direction for future work could be to try pushing this bound further
down. As pointed out in the introduction, our bound has been recently improved down
to 4 by Lužar, Przybyło and Soták [7]. The next step would thus be to completely
prove Conjecture 1.2 for decomposable subcubic graphs, or at least subclasses of
decomposable subcubic graphs. We actually made a first step towards this direction
when we considered subcubic graphs with bounded maximum average degree, and
proved the conjecture for some of them. As examples, let us mention that the cases of
subcubic bipartite graphs and subcubic planar graphs sound quite appealing to us.
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It might be interesting studying how locally irregular decompositions behave in these
graphs.

Another direction for future work could be to consider locally irregular decom-
positions of graphs with larger, but fixed, maximum degree. Recall that we have
provided an upper bound on their irregular chromatic index in Corollary 2.5. As a first
step, it could be interesting to investigate how lower this bound can be pushed down
for decomposable graphs with maximum degree 4. More generally, it could also be
interesting to improve the method in the proof of Observation 2.4, in order to obtain
better bounds on the irregular chromatic index of bounded-degree graphs.
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