PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation of Temperature-Sensitive Polyurethanes Based on Modified Castor Oil

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Otrzymywanie termowrażliwych poliuretanów na bazie zmodyfikowanego oleju rycynowego
Języki publikacji
EN
Abstrakty
EN
A series of temperature-sensitive polyurethanes (TSPUs) with polytetrahydrofuran glycol (PTMG), poly(ethylene glycol) (PEG) and maleic anhydride modified castor oil (MCO) as soft segments were prepared in this paper. The morphology of the temperature-sensitive polyurethane films was characterised by SEM, DSC and WAXD. SEM studies were also carried out to investigate the surface structure of coated and uncoated fabrics. The water vapour permeability of the coated and uncoated fabrics were measured as well. The results showed that a nonporous TSPU layer was formed on the coated fabric surface. The tailor -made TSPUs had one to three soft segment crystal melting point temperatures, with the lower peak temperature Tpm1 belonging to the soft segment PTMG and the higher peak temperature Tpm2 to the hydropilic soft segment PEG2000. The water vapour permeability of TSPUs coated fabrics increased with an increase in PEG2000 concentration and PEG molecular weight, but decreased with an increase in the hard segment content, and triggered around the soft segment crystal melting point temperature of TSPUs.
PL
W pracy otrzymano termowrażliwe poliuretany (TSPU) z glikolu politetrahydrofuranowego (PTMG), glikolu polietylenowego (PEG) i bezwodnika maleinowego zmodyfikowanego olejem rycynowym (MCO). Za pomocą SEM, DSC i WAXD zbadano morfologię termowrażliwych folii poliuretanowych. Przeprowadzono również badania SEM w celu zbadania struktury powierzchni powleczonych i niepowleczonych tkanin. Zmierzono także przepuszczalność pary wodnej powleczonych i niepowleczonych tkanin.
Rocznik
Strony
34--39
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing, 100029, China
  • Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing, 100029, China
autor
  • School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing, 100029, China
Bibliografia
  • 1. Lv Haining, Xue Yuan, Cai Zaisheng, et al. Microporous membrane with temperature-sensitive breathability based on PU/PNIPAAm semi-IPN. Journal of Applied Polymer Science 2012;124:E2-E8.
  • 2. Hu Zhou, Yi Chen, Haojun Fan, et al. Water vapour permeability of the polyurethane/TiO2 nanohybrid membrane with temperature sensitivity. Journal of Applied Polymer Science 2008;109: 3002-3007.
  • 3. Bin Zhai, Chi Zhang, Fuqiang Zhang, et al. Covalent modification of temperature-sensitive breathable polyurethane with carbon nanotubes. Journal Soft Materials 2016; 14: 272-277.
  • 4. Baohua Liu, Jinlian Hu, Qinghao Meng. Nonwoven supported temperature-sensitive poly(N-isopropylacrylamide)/polyurethane copolymer hydrogel with antibacterial activity. Journal of Bio-medical Materials Research Part B: Applied Biomaterials 2009; 89B: 1-8.
  • 5. Franklin M.-M, Emilio Bucio, Beatriz M, et al. Temperature- and pH-sensitive IPNs grafted onto polyurethane by gamma radiation for antimicrobial drug-eluting insertable devices. Journal of Applied Polymer Science 2014; 131: 39992.
  • 6. Karakas H, Sarac AS, Polat T, et al. Polyurthane nanofibers obtained by electrospinning process. International Journal of Biological, Biomolecular, Agricultural. Food and Biotechnological Engineering 2013; 7(3): 177-180.
  • 7. Zhou Hu, Yu Bin, Zhou Jie, et al. Synthesis and characterization of thermal- and pH-Sensitive polyurethane hydrogels with different transition temperature. Nanoscience and Nanotechnology Letters 2016; 8: 647-653.
  • 8. Mason B P, Whittaker M, Hemmer J, et al. A temperature-mapping molecular sensor for polyurethane-based elastomers. Appl. Phys. Lett. 2016; 108: 041906.
  • 9. Hu Zhou, Bin Yu, Ruiping Xun, et al. Novel temperature-sensitive and pH-sensitive polyurethane membranes: preparation and characterization. Asia-Pacific Journal of Chemical Engineering 2015; 10: 193-200.
  • 10. Hu Zhou, Huanhuan Shi, Haojun Fan and Jixin Yuan. Thermo-sensitive polyurethane membrane with controllable water vapor permeation for food packaging. Macromolecular Research 2009; 17: 528-532.
  • 11. Duan Ya- feng, Quan Heng, Hu Ling- ling. Study of polyurethane used for temperature-sensitive waterproof and breathable fabric Silik Monthly 2007; 12: 34-36.
  • 12. Horii F, Maruyama H, Hayashi S, et al. Moisture-permeable water-proof fabric and its production. JPH04370276 (A) 1992; 12, 22.
  • 13. Ding X M, Hu J L, Tao X M, et al. Preparation of temperature-sensitive polyurethanes for smart textiles. Textile Research Journal 2006; 76: 406-413.
  • 14. Huanhuan Shi, Yi Chen, Haojun Fan, et al. Thermosensitive polyurethane film and finished leather with controllable water vapour permeability. Journal of Applied Polymer Science 2010; 117: 1820-1827.
  • 15. QUAN Heng, WU Dan and HAN Jing. Study on the structure of polyether polyurethane and its waterproofing & breathable properties. TEXTILE AUXILIARIES 2012; 29: 8-11.
  • 16. Ding XM, Hu JL. Morphology and water vapour permeability of temperature-sensitive polyurethanes. Journal of Applied Polymer Science 2008,107: 4061-4069.
  • 17. Han H R. Shape memory and breathable waterproof properties of polyurethane nanowebs. Textile Research Journal 2013; 83: 76-82.
  • 18. Mondal S and Hu J L. Free volume and water vapour permeability of dense segmented polyurethane membrane. Journal of Membrane Science 2006; 280: 427-432.
  • 19. Anupama Kaushik Paramjit Singh. Kinetic Study of polyurethane reaction between castor Oil/TMP polyol and diphenyl methane diisocyanate in bulk. International Journal of Polymeric Materials and Polymeric Biomaterials 2006; 55:549-561.
  • 20. Bao Li-Hong, Lan Yun-Jun and Zhang Shu-Fe. Synthesis and properties of waterborne polyurethane dispersions with ions in the soft segments. Journal of Polymer Research 2006;13: 507-514.
  • 21. Mondal S and Hu J L. Water vapour permeability of cotton fabrics coated with shape memory polyurethane. Carbohydrate Polymer 2007; 67: 282-287.
  • 22. Qi Cao, Shaojun Chen and Jinlian Hu, et al. Study on the Liquefied-MDI-Based shape memory polyurethanes. Journal of Applied Polymer Science 2007; 106:993-1000.
  • 23. Dyana Merline J, Reghunadhan C P, Gouri Nair C, et al, Polyether polyurethanes: Synthesis, characterization, and thermoresponsive shape memory properties. Journal of Applied Polymer Science 2008; 107: 4082-4092.
  • 24. Shaojun Chen, Qi Cao, Bo Jing, et al. Effect of Microphase-separation promoters on the shape-memory behaviour of polyurethane. Journal of Applied Polymer Science 2006;102: 5224-5231.
  • 25. Ding X M, Hu JL and Tao XM. Effect of crystal melting on water vapour permeability of shape-memory polyurethane film. Textile Research Journal 2004;74: 39-43.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ebdaaf8-acb0-4097-a7eb-1a0c7cf9d855
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.