PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Neural Network Model for Control of Operating Modes of Crushing and Grinding Complex

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article investigates the application of neural network models to create automated control systems for industrial processes. We reviewed and analysed works on dispatch control and evaluation of equipment operating modes and the use of artificial neural networks to solve problems of this type. It is shown that the main requirements for identification models are the accuracy of estimation and ease of algorithm implementation. It is shown that artificial neural networks meet the requirements for accuracy of classification problems, ease of execution and speed. We considered the structures of neural networks that can be used to recognise the modes of operation of technological equipment. Application of the model and structure of networks with radial basis functions and multilayer perceptrons for identifying the mode of operation of equipment under given conditions is substantiated. The input conditions for constructing neural network models of two types with a given three-layer structure are offered. The results of training neural models on the model of a multilayer perceptron and a network with radial basis functions are presented. The estimation and comparative analysis of models depending on model parameters are made. It is shown that networks with radial basis functions offer greater accuracy in solving identification problems. The structural scheme of the automated process control system with mode identification based on artificial neural networks is offered.
Rocznik
Tom
Strony
26--40
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
  • Department of Power Supply, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"
  • Department of Electromechanical Equipment of Energy Production, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"
  • Department of Power Supply, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"
  • Department of Power Supply, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"
  • Department of Labor, Industrial and Civil Safety, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"
Bibliografia
  • Callan, R. (2000). Neural networks. Hotline – Telecom, 280.
  • Faek, F.K. (2009). Digital Modulation Classification Using Wavelet Transform and Artificial Neural Network. Journal of Zankoy Sulaimani, 13(1), 59-70.
  • Haykin, S. (2006). Neural networks: A Complete Course. Williams Publishing House, 1104.
  • Kalinchyk, V., Meita, O., Pobigaylo, V., Kalinchyk, V., Filyanin, D. (2021). Neuromodel of the “Crusher mill” Mechatronic Complex. Rocznik Ochrona Środowiska, 23. 470-483.
  • Kruglov, V.V., Borisov, V.V. (2002). Artificial neural networks. Theory and practice. Hotline – Telecom, 382.
  • Lukomski, R., Willkosz, A. (2003). Power System Topology Verification Using Artificial Neural Network Utilization of Measurement Data. IEEE Power Tech Conference, 180-186.
  • Malisuwan, S., Malisuwan, S., Suriyakrai, N., Madan, N. (2016). Radio Spectrum Valuation by Applying the Artificial Neural Network Model. Journal of Advances in Computer Networks, 4(1), 19-23.
  • Nguyen, T.T. (1995). Neural Network Load Flow. IEEE Trans of Distribution, Generation and Transmission Conference, 51-58.
  • Ponomaryov, V.A., Suvorov, I.F. (2011). Comprehensive approach of diagnostics of electric motors based on the use of artificial neural networks. News of electrical engineering, 5(71).
  • Rolim, Zurn, G.J.G. (2021). Interpretation of Remote Backup Protection of Fault by Fuzzy Expert System. IEEE Power Tech Conference, 312-315.
  • Venkatesan, M., Gokul, S., Gandhi, D.R.I. (2018). Artificial Neural Network Based Automated Escalating Tools for Crises Navigation. International Journal of Trend in Scientific Research and Development, 2(3), 350-354.
  • Warwick, K., Ekwure, A., Arragwal, R. (1997). Artificial Intelligence Techniques in Power System. IEEE Power Ingeneering Series, 22, Bookart Printed, 17-19.
  • Yang, J.X., Li, L.D., Rasul, M.G. (2021). Conceptual Artificial Neural Network Model in Warehouse. Receiving Management. International Journal of Machine Learning and Computing, 11(2), 130-136.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ebc5d8c-f2b2-40e5-943e-799a32599d49
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.