PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wetting transparency of graphene deposited on copper in contact with liquid tin

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Wetting behavior of liquid Sn (99.99%) on graphenecoated Cu substrate was investigated by the sessile drop method using two testing procedures: 1) classical contact heating (CH) of a couple of materials; 2) capillary purification (CP) allowing non-contact heating accompanied with squeezing the Sn droplet through a hole in an alumina capillary. The tests were performed in vacuum (p < 1.80 × 10-6 mbar) at 360 °C for 300 s. The images of Sn/substrate couples were recorded by high-resolution high-speed CCD camera. The results of this study evidenced that graphene layer is transparent for liquid Sn and after 300 s interaction, it forms the contact angles (θ) similar to those on pure Cu substrates, both in CH (θ = 59°) and CP (θ = 32°) tests. However, with liquid Sn, apparently the same effect of graphene wetting transparency is more complicated than that with water and it is caused by different mechanism, most probably, accompanied with reconstruction of the graphene layer.
Rocznik
Strony
3--11
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • Foundry Research Institute, Centre for High Temperature Studies, 73 Zakopianska St., 30-418 Krakow, Poland, Motor Transport Institute, 80 Jagiellonska St., 00-987 Warsaw, Poland
  • Foundry Research Institute, Centre for High Temperature Studies, 73 Zakopianska St., 30-418 Krakow, Poland
autor
  • Foundry Research Institute, Centre for High Temperature Studies, 73 Zakopianska St., 30-418 Krakow, Poland
autor
  • Foundry Research Institute, Centre for High Temperature Studies, 73 Zakopianska St., 30-418 Krakow, Poland
autor
  • Foundry Research Institute, Centre for High Temperature Studies, 73 Zakopianska St., 30-418 Krakow, Poland
autor
  • Motor Transport Institute, 80 Jagiellonska St., 00-987 Warsaw, Poland
autor
  • Motor Transport Institute, 80 Jagiellonska St., 00-987 Warsaw, Poland
autor
  • CVD Equipment Corporation, 355 South Technology Drive, Central Islip, NY 11722, USA
autor
  • CVD Equipment Corporation, 355 South Technology Drive, Central Islip, NY 11722, USA
autor
  • CVD Equipment Corporation, 355 South Technology Drive, Central Islip, NY 11722, USA
Bibliografia
  • 1. Geim A.K., Novoselov K.S. (2007). The rise of graphene. Nature Materials, 6, 183−191, doi:10.1038/nmat1849.
  • 2. Press Release (2010). The Nobel Prize in Physics 2010.http://www.nobelprize.org
  • 3. Singh V., Joung D., Zhai L., Das S., Khondaker S.I., Seal S. (2011). Graphene based materials: past, present and future. Progress Mater. Sci., 56(8), 1178−1271.
  • 4. Li Z., Wang Y., Kozbial A., Shenoy G., Zhou F., McGinley R., Ireland P., Morganstein B., Kunkel A., Surwade S.P., Li L., Liu H. (2013). Effect of airborne contaminants on the wettability of supported graphene and graphite. Nature Materials, 12, 925−931.
  • 5. Kozbial A., Li Z., Sun J., Gong X., Zhou F., Wang Y., Xu H., Liu H., Li L. (2014). Understanding the intrinsic water wettability of graphite. Carbon, 74, 218−225.
  • 6. Scocchi G., Sergi D., D’Angelo C., Ortona A. (2011). Wetting and contact-line effects for spherical and cylindrical droplets on graphene layers: A comparative molecular-dynamics investigation. Phys. Rev. E 84, 061602.
  • 7. Werder T., Walther J.H., Jaffe R.L., Halicioglu T., Koumoutsakos P. (2003). On the water–carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J. Phys. Chem. B107, 1345−1352.
  • 8. Rafiee J., Mi X., Gullapalli H., Thomas A., Yavari F., Shi Y., Ajayan P., Koratkar N. (2012). Wetting transparency of graphene. Nature Materials, 11(3), 217−222.
  • 9. Shih C., Wang Q.H., Lin S., Park K.-C., Jin Z., Strano M.S., Blankschtein D. (2012). Breakdown in the wetting transparency of graphene. Phys. Rev. Letters, 109, 176101.
  • 10. Kim G.-T., Gim S.-J., Cho S.-M., Koratkar N., Oh I.-K. (2014). Wetting-transparent graphene films for hydrophobic water-harvesting surfaces. Adv. Mater., 26(30), 5166−5172.
  • 11. Naidich Yu.V., Kolesnichenko G.A. (1963). Study of the diamond and graphite by liquid metals. Poroshkovaya Metallurgiya, 13, 49−53.
  • 12. Sobczak N., Singh M., Asthana R. (2005). High-temperature wettability measurements in metal/ceramic systems – Some methodological issues. Curr. Opin. Solid State Mater. Sci., 9(4), 241−253.
  • 13. Scalable 2D-FILM CVD Synthesis. Patent pending by CVD Equipment Corporation, USA, (2014).
  • 14. Singh V., Joung D., Zhai L., Das S., Khondaker S.I., Seal S. (2011). Graphene based materials: Past, present and future. Prog. Mater. Sci., 56(8), 1178−1271.
  • 15. Sobczak N., Nowak R., Radziwill W., Budzioch J., Glenz A. (2008). Experimental complex for investigations of high-temperature behaviour of molten metals in contact with refractory materials. Mater. Sci. Eng., A495(1), 43−49.
  • 16. Sobczak N., Kudyba A., Nowak R., Radziwill W., Pietrzak K. (2007). Factors affecting wettability and bond strength of solder joint couples. Pure App. Chem., 79(10), 1755−1769.
  • 17. Nowak R., Sobczak N., Lanata T., Ricci E., Korpała B. (2009). Effect of oxide nanocoating on surface tension measurement of pure tin. Trans. Foundry Research Institute, 49(4), 5−13.
  • 18. Sobczak N., Asthana R., Radziwill W., Nowak R., Kudyba A. (2007). The role of aluminium oxidation in the wetting-bonding relationship of Al/oxide couples. Arch. Metall. Mater., 52(1), 55−65.
  • 19. Liggieri L., Passerone A. (1989). An automatic technique for measuring the surface tension of liquid metals. High. Temp. Technol., 7(1), 80−86.
  • 20. ASTRA Reference Book, IENI, Report, Oct. 2007.
  • 21. Yuan Z.F., Mukai K., Takagi K., Ohtaka M., Huang W.L., Liu Q.S. (2002). Surface tension and its temperature coefficient of molten tin determined with the sessile drop method at different oxygen partial pressures. J. Coll. Interface Sci., 254(2), 338−345.
  • 22. Sobczak J.J., 2010 – unpublished research.
  • 23. Agatopoulos S., University of Ioannina, Greece – private communication.
  • 24. Zan R., Bangert U., Ramasse Q., Novoselov K.S. (2011). Metal−Graphene Interaction Studied via Atomic Resolution Scanning Transmission Electron Microscopy. Nano Lett., 11(3), 1087−1092.
  • 25. Zan R., Bangert U., Ramasse Q., Novoselov K.S. (2012). Interaction of metals with suspended graphene observed by transmission electron microscopy. J. Phys. Chem. Lett., 3(1), 953−958.
  • 26. Ramasse Q.M., Zan R., Bangert U., Boukhvalov D.W., Son Y.W., Novoselov K.S. (2012). Direct experimental evidence of metal-mediated etching of suspended graphene. ACS Nano, 6(5), doi: 10.1021/nn300452y.
  • 27. Zan R., Ramasse Q.M., Bangert U., Novoselov K.S. (2012). Graphene re-knits its holes. Nano Lett., 12(8), 3936−3940.
  • 28. Sobczak N., Kudyba A., Nowak R., Sienicki E., Pietrzak K. (2012). Examination of early stage of intermetallic compound formation during interaction between liquid tin and solid copper substrates, in Handbook of High-Temperature Lead-Free Solders, vol. 3: Group project reports, A. Kroupa (Ed.), COST office, 143−148.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ebab8d4-1db3-4529-83ec-22e4f6e23752
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.