PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling and Simulation of the Magnesium Primary Phase Crystallization in the AZ91/SiCp Composite Dependent on Mass Fraction of SiCp

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work is to develop a numerical model capable of predicting the grain density in the Mg-based matrix phase of an AZ91/SiC composite, as a function of the total mass fraction of the embedded SiC particles. Based on earlier work in a range of alloy systems, we assume an exponential relationship between the grain density and the maximum supercooling during solidification. Analysis of data from cast samples with different thicknesses, and mass fractions of added SiCp, permits conclusions to be drawn on the role of SiCp in increasing grain density. By fitting the data, an empirical nucleation law is derived that can be used in a micro model. Numerical simulation based on the model can predict the grain density of magnesium alloys containing SiC particles, using the mass fraction of the particles as inputs. These predictions are compared with measured data.
Twórcy
autor
  • AGH-University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23 Str., 30-059 Krakow, Poland
autor
  • AGH-University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23 Str., 30-059 Krakow, Poland
autor
  • ICB UMR 6303 CNRS – Université Bourgogne Franche-Comté, Dijon, France
autor
  • AGH-University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23 Str., 30-059 Krakow, Poland
autor
  • AGH-University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23 Str., 30-059 Krakow, Poland
autor
  • AGH-University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23 Str., 30-059 Krakow, Poland
Bibliografia
  • [1] L. Drenchev, J. Sobczak, S. Malinov, W. Sha, Model. Simul. Mater. Sci. Eng. 11 (4), 635-649 (2003).
  • [2] A. Luo, Can. Metall. Quart. 35 (4), 375-383 (1996).
  • [3] H. Krawiec, J. Lelito, E. Tyrala et al., J. Solid State Electrochem. 13 (6), 935-942 (2009).
  • [4] D. M. Stefanescu, G. Upadhya et al., Metall. Trans. 21A, 997-1005 (1990).
  • [5] J. Liu, R. Elliott. J. Cryst. Growth 191 (1-2), 261-267 (1998).
  • [6] M. Rappaz, Ch. A. Gandin, Acta Metall. 41 (2), 345-360 (1993).
  • [7] R. Gunther, Ch. Hartig, R. Bormann. Acta Mater. 54 (20), 5591-5597 (2006).
  • [8] J. Lelito, J. Sz. Suchy, P. Żak et al., Polish metallurgy 2006-2010 in time of the worldwide economic crisis. Kraków: AKAPIT, 123-143 (2010).
  • [9] S. K. Jagadeesh, C. S. Ramesh et al., J. Mat. Proc. Tech. 210 (4), 618-623 (2010).
  • [10] A. Certin, A. Kalkanli, J. Mat. Proc. Tech. 209 (10), 4795-4801 (2009).
  • [11] W. Oldfield, Trans. ASM 59, 945-961 (1966).
  • [12] A. L. Greer, A. M. Bunn, A. Tronche et al., Acta Mater. 48 (11), 2823-2835 (2000).
  • [13] A. L. Greer, T. E. Quested, Phil. Mag. 86 (24), 3665-3680 (2006).
  • [14] E. Fraś, K. Wiencek, M. Górny et al., Mat. Sci. Tech. 19, 1653-1659 (2003).
  • [15] I. Maxwell, A. Hellawell, Acta Metall. 23 (2), 229-237 (1975).
  • [16] J. Lelito, P. L. Zak, J. S. Suchy et al., China Foundry 8 (1), 101-106 (2011).
  • [17] J. Lelito, P. L. Zak, et al., 69th WFC, Hangzhou, China, 16-20 October, (2010).
  • [18] R. A. Tanzilli, R. W. Heckel, Trans A.I.M.E. 242, 2312-2321 (1968).
  • [19] J. M. Vitek, S. A. Vitek, S. A. David, Metall. Mater. Trans. 26A, 2007-2014 (1995).
  • [20] T. C. Illingworth, I. O. Golosnoy, J. Comp. Phys. 209 (1), 207-225 (2005).
  • [21] Built-in material database of MAGMAsoft 4.2 software. Aachen, Germany (2002).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6eb7d571-b0d0-4bb1-919d-ff9ca68dba46
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.